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Abstract 
This research aimed to enhance stock price prediction accuracy using the Stacked Bidirectional 
Long Short-Term Memory (StacBi LSTM) model. The study addressed the challenge of capturing 
long-term dependencies and temporal patterns inherent in stock price data. The research 
objectives were to evaluate the model’s performance across different input sequence lengths and 
identify the optimal length for prediction. Leveraging a dataset from the Indonesian Stock 
Exchange, the model’s predictions were evaluated using key metrics such as RMSE, MAE, 
MAPE, and R2. Results indicated that the StacBi LSTM model excelled in capturing stock price 
trends and demonstrated strengths over traditional methods. The optimal input sequence length 
was identified, balancing computational efficiency and prediction accuracy. This research 
contributes valuable insights into improving stock price prediction techniques and offers practical 
implications for traders and investors. Future research directions encompass hybrid models and 
integrating external factors to enhance predictive capabilities further. 
 
Keywords: Stock Price Prediction, Stacked Bidirectional LSTM, Time Series Analysis, 
Indonesian Stock Exchange, Input Sequence Length 
 

Abstrak 
Penelitian ini bertujuan untuk meningkatkan akurasi prediksi harga saham menggunakan model 
Stacked Bidirectional Long Short-Term Memory (StacBi LSTM). Penelitian ini mengatasi 
tantangan dalam menangkap ketergantungan jangka panjang dan pola temporal yang inheren 
dalam data harga saham. Tujuan penelitian adalah mengevaluasi kinerja model dalam berbagai 
panjang urutan masukan dan mengidentifikasi panjang masukan yang optimal untuk prediksi. 
Dengan menggunakan dataset dari Bursa Efek Indonesia, prediksi model dievaluasi 
menggunakan metrik kunci seperti RMSE, MAE, MAPE, dan R2. Hasil penelitian menunjukkan 
bahwa model StacBi LSTM mampu dengan baik dalam menangkap tren harga saham dan 
memiliki keunggulan dibandingkan metode tradisional. Panjang masukan optimal diidentifikasi, 
menciptakan keseimbangan antara efisiensi komputasi dan akurasi prediksi. Penelitian ini 
memberikan wawasan berharga dalam meningkatkan teknik prediksi harga saham dan 
memberikan implikasi praktis bagi para trader dan investor. Arah penelitian di masa depan 
meliputi model hibrida dan integrasi faktor eksternal untuk meningkatkan kemampuan prediksi 
lebih lanjut. 
 
Kata Kunci: Prediksi harga saham, Stacked Bidirectional LSTM, Analisis runtun waktu, 
Bursa Efek Indonesia, Panjang urutan masukan 

1. INTRODUCTION 

Stock price prediction is a crucial domain within financial research, holding substantial 
implications for global financial markets in an increasingly interconnected and dynamic economy 
(Miftahurrohmah et al., 2021). Accurate predictions of stock prices are imperative for enabling 
informed decision-making among investors, traders, and financial institutions, leading to 
enhanced portfolio management, effective risk mitigation, and optimal resource allocation (Aydin 
et al., 2022). Furthermore, such predictions are instrumental in uncovering potential profit 
avenues and formulating efficacious trading strategies. In this regard, advanced machine learning 
and deep learning techniques have been transformative, providing novel means to enhance 
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prediction precision and unravel complex patterns in historical stock data, thereby empowering 
market participants to make more lucrative investment decisions (Rajamoorthy et al., 2022). 
 
In evaluating predictive methodologies, fundamental analysis emerges as a prominent approach, 
anchored in examining a company’s financial and economic data to gauge its intrinsic value and 
determine the stock’s market standing (Williams et al., 2020). Despite its merits, this method is 
not without its challenges; it is inherently time-intensive, subjective in nature, and often neglects 
short-term market sentiments, rendering it less effective for tracking swift market dynamics 
(Naumoski et al., 2022; Wang et al., 2021). Conversely, technical indicators offer real-time 
analyses rooted in historical price and volume data, shedding light on market trends and potential 
trading positions (Jamous et al., 2021). However, they have limitations, including a tendency to 
rely heavily on past data, produce delayed signals, and generate false signals in volatile markets. 
These challenges necessitate expertise in selecting and adapting indicators and parameters to 
individual stocks and resolving discrepancies when multiple indicators are employed 
simultaneously (Htun et al., 2023). 
 
From a modeling perspective, AutoRegressive Integrated Moving Average (ARIMA) models and 
their seasonal variant, SARIMA, are widely recognized for their efficacy in time series forecasting, 
especially for data with linear dependencies and periodic fluctuations respectively (Brahma & 
Wadhvani, 2020; Jiang et al., 2019). Nevertheless, they exhibit limitations in addressing non-
stationary data and capturing non-linear patterns, with performance challenges arising when 
dealing with long-term and noisy data (Musarat et al., 2021; Shuai et al., 2021). Support Vector 
Machine (SVM) and Decision Tree algorithms. However, capturing complex relationships and 
providing intuitive insights also present challenges regarding dataset balance, feature scaling, 
and model stability (Jamous et al., 2021; Sekiguchi et al., 2019).  
 
Ensemble methods like Random Forest and XGBoost attempt to mitigate these issues by 
aggregating multiple models, enhancing predictive performance and robustness to overfitting 
(Campbell et al., 2020; Pamir et al., 2022). Nevertheless, they still grapple with challenges related 
to computational efficiency, hyperparameter tuning, and interpretability (Kim et al., 2021; Lind & 
Anderson, 2019). On the other hand, K-Nearest Neighbors (KNN) stands out for its simplicity and 
robustness, although it requires careful parameter selection and is computationally demanding 
for large datasets (Lokanan, 2022; Ma et al., 2020). 
 
Delving into deep learning, Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs) represent robust architectures for handling sequential data, each with its own 
set of challenges and areas of applicability (Gao et al., 2018; Succetti et al., 2022; Tang & 
Mahmoud, 2022). LSTM and GRU, as variants of RNNs, offer solutions to the vanishing gradient 
problem, facilitating the capture of long-term dependencies, albeit with considerations for 
computational cost and overfitting (Ahmad et al., 2022; Choi & Shin, 2019; Suleman & Shridevi, 
2022). Autoencoders and Generative Adversarial Networks (GANs) further extend the deep 
learning repertoire, providing capabilities in feature extraction, dimensionality reduction, and data 
augmentation, but necessitate careful model design and training (Erizal & Diqi, 2023; Fathy et al., 
2021; Mo et al., 2022; Pan et al., 2020; Zhang et al., 2022). 
 
The research presented here revolves around the StacBi LSTM model, chosen for its proficiency 
in capturing long-term dependencies and temporal patterns in stock prices, integrating 
bidirectional processing and multiple LSTM layers to discern complex relationships in time series 
data (Suleman & Shridevi, 2022). The investigation is structured to predict stock prices using this 
model with varied input sequences, aiming to discern the impact of sequence length on predictive 
performance and employing a comprehensive suite of evaluation metrics to benchmark against 
conventional forecasting methods. This study contributes to the domain of stock price prediction 
by elucidating the potentials of the StacBi LSTM model, exploring the influence of input sequence 
variations, and advancing the evaluation methodology within this context. 
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2. METHODS 

2.1 Long Short-Term Memory (LSTM) 

LSTM is an RNN that addresses the vanishing gradient problem, allowing it to capture long-term 
dependencies in sequential data (Qaddoura et al., 2021). It achieves this by introducing a memory 
cell and three gating mechanisms: the input gate, forget gate, and output gate. Table 1 
summarizes the mathematical notation used in the context of LSTM. 

Table 1 Mathematical Notation for LSTM 

Symbol Description 

𝑥𝑡 The input at time step 𝑡. 
ℎ𝑡 The hidden state at time step 𝑡. 

𝑐𝑡 The cell state (memory) at time step 𝑡. 

𝑖𝑡 The input gate at time step 𝑡. 

𝑓𝑡 The forget gate at time step 𝑡. 
𝑜𝑡 The output gate at time step 𝑡. 

σ The sigmoid activation functions. 

 𝑡𝑎𝑛ℎ The hyperbolic tangent activation function. 

 
The LSTM computation consists of four main steps for each time step 𝑡: 
 
Input Gate. The input gate determines how much of the new input information is stored in the cell 
state, as calculated in Equation 1. 
 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) (1) 

 
Forget Gate. The forget gate determines how much of the previous cell state to retain for the 
current time step, as calculated in Equation 2. 
 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓) (2) 

 
Cell State. The cell state is updated by combining the previous cell state with the new input 
information using the input and forget gates, as calculated in Equation 3. 
 

�̃�𝑡 = tanh(𝑊𝑐𝑥𝑥𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡 
(3) 

 
Output Gate. The output gate determines how much of the updated cell state to output as the 
hidden state for the current time step, as calculated in Equation 4. 
 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜) (4) 

 
Hidden State. The hidden state is obtained by applying the output gate to the updated cell state, 
as calculated in Equation 5. 
 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝑐𝑡) (5) 

 
Here, 𝑊𝑖𝑥, 𝑊𝑖ℎ, 𝑊𝑓𝑥, 𝑊𝑓ℎ, 𝑊𝑐𝑥, 𝑊𝑐ℎ, 𝑊𝑜𝑥, 𝑊𝑜ℎ are weight matrices and 𝑏𝑖, 𝑏𝑓, 𝑏𝑐, 𝑏𝑜 are bias vectors. 

 
The LSTM memory cell’s ability to control the flow of information through the input, forget, and 
output gates enables it to retain essential information over long sequences, making it effective in 
capturing long-term dependencies in time series data. The vanishing gradient problem is 
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mitigated by the constant error flow through the cell state, allowing for more stable and efficient 
training. 

2.2 Stacked Bidirectional (StacBi) LSTM 

The StacBi LSTM consists of 𝑁 LSTM layers, 𝑁/2 in the forward direction and 𝑁/2 in the 
backward direction. Table 2 summarizes the mathematical notation used in the StacBi LSTM 
model, distinguishing between the forward and backward LSTM layers and their respective 
hidden states, cell states, and gates. 

Table 2 Mathematical Notation for StacBi LSTM 

Symbol Description 

𝑥𝑡  The input at time step 𝑡.                                    

ℎ𝑡
(𝑛,𝑓)

  The hidden state of the 𝑛-th forward LSTM layer at time step 𝑡.      

𝑐𝑡
(𝑛,𝑓)

  The cell state (memory) of the 𝑛 -th forward LSTM layer at time step 𝑡. 

ℎ𝑡
(𝑛,𝑏)

  The hidden state of the 𝑛-th backward LSTM layer at time step 𝑡.     

𝑐𝑡
(𝑛,𝑏)

  The cell state (memory) of the 𝑛-th backward LSTM layer at time step 𝑡. 

𝑖𝑡
(𝑛,𝑓)

  The input gate of the 𝑛-th forward LSTM layer at time step 𝑡.          

𝑓𝑡
(𝑛,𝑓)

  The forget gate of the 𝑛-th forward LSTM layer at time step 𝑡.         

𝑜𝑡
(𝑛,𝑓)

  The output gate of the 𝑛-th forward LSTM layer at time step 𝑡.         

𝑖𝑡
(𝑛,𝑏)

  The input gate of the 𝑛-th backward LSTM layer at time step 𝑡.         

𝑓𝑡
(𝑛,𝑏)

  The forget gate of the 𝑛-th backward LSTM layer at time step 𝑡.        

𝑜𝑡
(𝑛,𝑏)

  The output gate of the 𝑛-th backward LSTM layer at time step 𝑡.        

�̃�𝑡
(𝑛,𝑓)

  The candidate cell state of the 𝑛-th forward LSTM layer at time step 𝑡.  

�̃�𝑡
(𝑛,𝑏)

  The candidate cell state of the 𝑛-th backward LSTM layer at time step 𝑡. 

 

Forward LSTM. The forward LSTM computes the hidden state ℎ𝑡
(𝑛,𝑓)

 and the cell state 𝑐𝑡
(𝑛,𝑓)

 for 

the 𝑛-th forward layer at time step 𝑡, as shown in Equation 6. 
 

𝑖𝑡
(𝑛,𝑓)

= σ (𝑊𝑖𝑥
(𝑛,𝑓)

𝑥𝑡 + 𝑊𝑖ℎ
(𝑛,𝑓)

ℎ𝑡−1
(𝑛,𝑓)

+ 𝑏𝑖
(𝑛,𝑓)

) 

𝑓𝑡
(𝑛,𝑓)

= σ (𝑊𝑓𝑥
(𝑛,𝑓)

𝑥𝑡 + 𝑊𝑓ℎ
(𝑛,𝑓)

ℎ𝑡−1
(𝑛,𝑓)

+ 𝑏𝑓
(𝑛,𝑓)

) 

�̃�𝑡
(𝑛,𝑓)

= tanh (𝑊𝑐𝑥
(𝑛,𝑓)

𝑥𝑡 + 𝑊𝑐ℎ
(𝑛,𝑓)

ℎ𝑡−1
(𝑛,𝑓)

+ 𝑏𝑐
(𝑛,𝑓)

) 

𝑐𝑡
(𝑛,𝑓)

= 𝑓𝑡
(𝑛,𝑓)

⋅ 𝑐𝑡−1
(𝑛,𝑓)

+ 𝑖𝑡
(𝑛,𝑓)

⋅ �̃�𝑡
(𝑛,𝑓)

 

𝑜𝑡
(𝑛,𝑓)

= σ (𝑊𝑜𝑥
(𝑛,𝑓)

𝑥𝑡 + 𝑊𝑜ℎ
(𝑛,𝑓)

ℎ𝑡−1
(𝑛,𝑓)

+ 𝑏𝑜
(𝑛,𝑓)

) 

ℎ𝑡
(𝑛,𝑓)

= 𝑜𝑡
(𝑛,𝑓)

⋅ tanh (𝑐𝑡
(𝑛,𝑓)

) (6) 
 

Backward LSTM. The backward LSTM computes the hidden state ℎ𝑡
(𝑛,𝑏)

 and the cell state 𝑐𝑡
(𝑛,𝑏)

 

for the 𝑛-th backward layer at time step 𝑡, as shown in Equation 7.  
 

𝑖𝑡
(𝑛,𝑏)

= σ(𝑊𝑖𝑥
(𝑛,𝑏)

𝑥𝑡 + 𝑊𝑖ℎ
(𝑛,𝑏)

ℎ𝑡+1
(𝑛,𝑏)

+ 𝑏𝑖
(𝑛,𝑏)

) 

𝑓𝑡
(𝑛,𝑏)

= σ(𝑊𝑓𝑥
(𝑛,𝑏)

𝑥𝑡 + 𝑊𝑓ℎ
(𝑛,𝑏)

ℎ𝑡+1
(𝑛,𝑏)

+ 𝑏𝑓
(𝑛,𝑏)

) 

�̃�𝑡
(𝑛,𝑏)

= tanh(𝑊𝑐𝑥
(𝑛,𝑏)

𝑥𝑡 + 𝑊𝑐ℎ
(𝑛,𝑏)

ℎ𝑡+1
(𝑛,𝑏)

+ 𝑏𝑐
(𝑛,𝑏)

) 

𝑐𝑡
(𝑛,𝑏)

= 𝑓𝑡
(𝑛,𝑏)

⋅ 𝑐𝑡+1
(𝑛,𝑏)

+ 𝑖𝑡
(𝑛,𝑏)

⋅ �̃�𝑡
(𝑛,𝑏)

 

𝑜𝑡
(𝑛,𝑏)

= σ(𝑊𝑜𝑥
(𝑛,𝑏)

𝑥𝑡 + 𝑊𝑜ℎ
(𝑛,𝑏)

ℎ𝑡+1
(𝑛,𝑏)

+ 𝑏𝑜
(𝑛,𝑏)

) 

ℎ𝑡
(𝑛,𝑏)

= 𝑜𝑡
(𝑛,𝑏)

⋅ tanh(𝑐𝑡
(𝑛,𝑏)

) (7) 
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StacBi LSTM. The StacBi LSTM is formed by stacking 𝑁 LSTM layers, where each forward 
layer’s output serves as the input to the next forward layer, and each backward layer’s output is 
the input to the next backward layer, as shown in Equations 8-9. 
 
Forward Pass. For the 𝑛-th forward layer: 
 

𝑥𝑡
(𝑛,𝑓)

= ℎ𝑡
(𝑛−1,𝑓)

 

ℎ𝑡
(𝑛,𝑓)

= Forward LSTM computation using 𝑥𝑡
(𝑛,𝑓)

 as input (8) 
 
Backward Pass. For the 𝑛-th backward layer: 
 

𝑥𝑡
(𝑛,𝑏)

= ℎ𝑡
(𝑛+1,𝑏)

 

ℎ𝑡
(𝑛,𝑏)

= Backward LSTM computation using 𝑥𝑡
(𝑛,𝑏)

 as input (9) 
 
The final hidden state ℎ𝑡 of the StacBi LSTM is obtained by concatenating the outputs from the 

last forward layer ℎ𝑡
(𝑁/2,𝑓)

 and the first backward layer ℎ𝑡
(1,𝑏)

, as shown in Equation 10. 

 

ℎ𝑡 = [ℎ𝑡
(𝑁/2,𝑓)

; ℎ𝑡
(1,𝑏)

] (10) 

 
In this way, the StacBi LSTM captures past and future context, enabling it to model long-term 
dependencies and complex temporal patterns more effectively than a single LSTM layer. 

2.3 Dataset 

The dataset utilized in this research is sourced from Yahoo Finance (Erizal & Diqi, 2023). It 
encompasses the top 10 stocks listed in the Indonesia Stock Exchange within the period spanning 
from July 6, 2015, to October 14, 2021. The stocks and corresponding symbols and sectors are 
presented in Table 3.  

Table 3 List of the Observed Stocks 

Symbol Company Sector 

ACES.JK Ace Hardware Indonesia Tbk. Consumer Non-Cyclicals 
ADRO.JK Adaro Energy Tbk. Energy 
EXCL.JK XL Axiata Tbk. Infrastructures 
KLBF.JK Kalbe Farma Tbk. Healthcare 
PGAS.JK Perusahaan Gas Negara (Persero) Tbk. Energy 
PTBA.JK Tambang Batubara Bukit Asam (Persero) Tbk. Energy 
PTPP.JK PP (Persero) Tbk. Infrastructures 
PWON.JK Pakuwon Jati Tbk. Properties & Real Estate 
SMRA.JK Summarecon Agung Tbk. Properties & Real Estate 
TPIA.JK Chandra Asri Petrochemical Tbk. Basic Materials 

 
The dataset includes essential features such as Date, Open, High, Low, Close, and Volume, with 
records collected daily. Notably, this study exclusively focuses on the Close Price variable, as 
depicted in Figures 1 to 10. 
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Figure 1 ACES.JK 

 

Figure 2 ADRO.JK 

 

Figure 3 EXCL.JK 

 

Figure 4 KLBF.JK 
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Figure 5 PGAS.JK 

 

Figure 6 PTBA.JK 

 

Figure 7 PTPP.JK 

 

Figure 8 PWON.JK 



 
 JISKA (Jurnal Informatika Sunan Kalijaga) 
17  ■ Vol. 9, No. 1, JANUARI, 2024: 10 – 26 

 
Artikel ini didistribusikan mengikuti lisensi Atribusi-NonKomersial CC BY-NC sebagaimana tercantum pada 
https://creativecommons.org/licenses/by-nc/4.0/. 

 

Figure 9 SMRA.JK 

 

Figure 10 TPIA.JK 

2.4 Data Processing 

In the preparatory phase of data preprocessing, meticulous measures were implemented to refine 
the dataset for predicting stock prices, ensuring its quality and relevance. Instances with a trading 
volume of zero were deliberately removed to prevent potential distortions in the model’s learning 
trajectory. The min-max scaler technique was applied in a normalization procedure to foster model 
convergence and maintain numerical stability. This method recalibrates the range of feature 
values to a standardized scale between 0 and 1, accommodating various data magnitudes and 
contributing to a more uniform and manageable dataset for the model. The mathematical 
formulation of the min-max scaler is provided in Equation 11, detailing the procedure of this 
normalization process. 
 

𝑋normalized =
𝑋 − 𝑋min

𝑋max − 𝑋min

 (11) 

 
Where 𝑋 is the original feature value, 𝑋min and 𝑋max are the minimum and maximum values of the 
feature, respectively. This preprocessing strategy ensures that the dataset lacks missing values 
and zero volume instances and is normalized for effective utilization in the subsequent analysis. 

2.5 Data Splitting 

The dataset, consisting of 1269 data points, was split into distinct subsets to facilitate practical 
model training, validation, and testing. Specifically, 40 data points were reserved for testing the 
model’s generalization performance on unseen data. Most of the data, totaling 983 instances, 
was allocated for training the model to learn patterns and relationships within the dataset. An 
additional subset comprising 246 data points was designated for validation, enabling the fine-
tuning of model hyperparameters and preventing overfitting. This data-splitting strategy ensured 
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that the model’s performance was rigorously assessed across different training and testing 
phases, enhancing its predictive capabilities for stock price forecasting. 

2.6 Model Training Process 

The model training process involves a StacBi LSTM architecture for stock price prediction. The 
model is structured as follows: 
 
1) Input Configuration: The input features are defined by 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =  1, indicating that the 

model utilizes one feature (Close Price) for prediction. Three different input sequence 
lengths, 𝑛_𝑠𝑡𝑒𝑝𝑠 = [30,50,70], are considered to capture varying historical information. 

2) Model Construction: A Sequential model is established. The first layer is a Bidirectional 
LSTM with 256 units, employing the ‘relu’ activation function and ‘return_sequences=True’ 
to pass sequences to the subsequent layer. A dropout layer (dropout rate = 0.2) follows, 
aiding in regularization. 

3) Second Bidirectional LSTM: Another Bidirectional LSTM with 128 units and “relu’ activation 
is added, capturing complex temporal patterns. Another dropout layer (dropout rate = 0.2) 
helps prevent overfitting. 

4) Output Layer: A Dense layer with 1 unit is employed for the final prediction. 
5) Compilation: The model is compiled with the Adam optimizer (learning rate = 0.001) and 

mean squared error (MSE) loss function. 
6) Training: The model is trained using the provided training data (X and y) for 100 epochs, 

with a batch size 32. Training progress is run in a quiet mode (verbose=0). 
 
This training process enables the model to learn and capture intricate patterns in the input data, 
ultimately enhancing its ability to forecast stock prices accurately. 

2.7 Evaluation Metrics 

In this research, several evaluation metrics were employed to assess the performance of the 
StacBi LSTM model in predicting stock prices. The following metrics were utilized and formulated 
in Equations 12-15. 
 
1) Root Mean Squared Error (RMSE) (Gutmann et al., 2021): 

 

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (12) 

 
2) Mean Absolute Error (MAE) (Gutmann et al., 2021): 

 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 (13) 

 
3) Mean Absolute Percentage Error (MAPE) (Patel et al., 2022): 

 

MAPE =
1

𝑛
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖

|

𝑛

𝑖=1

× 100 (14) 

 
 
4) Coefficient of Determination (R2) (Baek & Chung, 2023): 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (15) 
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Here, 𝑦𝑖 represents the actual stock price, 𝑦�̂�  represents the predicted stock price, �̅� is the mean 

of the actual stock prices, and 𝑛 is the number of data points. These evaluation metrics collectively 
quantify the model’s accuracy, precision, and goodness of fit in predicting stock prices. 

3. RESULTS AND DISCUSSION 

The StacBi LSTM model was employed to forecast stock prices for 40 days. The model’s 
predictive accuracy was assessed using fundamental metrics: Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of 
Determination (R2), as illustrated in Table 4. 

Table 4 Performance of the StacBi LSTM Model 

Symbol n_steps RMSE MAE MAPE R2 

ACES.JK 30 0.01049 0.00769 0.01221 0.94227 
50 0.01014 0.00820 0.01319 0.94608 
70 0.01473 0.01131 0.01775 0.88621 

ADRO.JK 30 0.01047 0.00758 0.01451 0.99064 
50 0.01123 0.00829 0.01594 0.98923 
70 0.00980 0.00763 0.01596 0.99180 

EXCL.JK 30 0.01254 0.01131 0.02076 0.96542 
50 0.00901 0.00708 0.01328 0.98214 
70 0.01489 0.01397 0.02653 0.95126 

KLBF.JK 30 0.01656 0.01449 0.02599 0.92209 
50 0.01141 0.00946 0.01763 0.96302 
70 0.01573 0.01366 0.02475 0.92972 

PGAS.JK 30 0.01003 0.00641 0.03496 0.95224 
50 0.00888 0.00797 0.05998 0.96260 
70 0.00915 0.00858 0.06007 0.96025 

PTBA.JK 30 0.01072 0.00897 0.02264 0.97277 
50 0.00690 0.00534 0.01334 0.98873 
70 0.01755 0.01644 0.04525 0.92700 

PTPP.JK 30 0.00632 0.00513 0.03823 0.95554 
50 0.00507 0.00423 0.03271 0.97131 
70 0.00645 0.00557 0.04492 0.95361 

PWON.JK 30 0.01153 0.01005 0.02550 0.95741 
50 0.01699 0.01434 0.03395 0.90751 
70 0.00710 0.00556 0.01407 0.98383 

SMRA.JK 30 0.00631 0.00522 0.01633 0.95927 
50 0.00949 0.00911 0.02990 0.90789 
70 0.00397 0.00317 0.01030 0.98392 

TPIA.JK 30 0.00875 0.00644 0.00982 0.97799 
50 0.01171 0.01045 0.01630 0.96063 
70 0.01474 0.01304 0.02052 0.93765 

 
To visually depict the model’s performance, Figures 11 to 20 illustrate the actual stock prices over 
the next 40 days (indicated by the red line) alongside the predicted prices for the same period 
using input sequence lengths of 𝑛_𝑠𝑡𝑒𝑝𝑠 =  30 (represented by the blue line), 𝑛_𝑠𝑡𝑒𝑝𝑠 =  50 
(depicted by the yellow line), and 𝑛_𝑠𝑡𝑒𝑝𝑠 =  70 (illustrated by the green line). These figures 
provide a comprehensive insight into the model’s predictive capabilities under varying input 
conditions, allowing for a comprehensive assessment of its effectiveness in capturing short-term 
stock price trends. 
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Figure 11 Performance of ACES.JK 

 

Figure 12 Performance of ADRO.JK 

 

Figure 13 Performance of EXCL.JK 

 

Figure 14 Performance of KLBF.JK 
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Figure 15 Performance of PGAS.JK 

 

Figure 16 Performance of PTBA.JK 

 

Figure 17 Performance of PTPP.JK 

 

Figure 18 Performance of PWON.JK 
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Figure 19 Performance of SMRA.JK 

 

Figure 20 Performance of TPIA.JK 

3.1 Impact of Input Sequence Lengths 

The investigation into the StacBi LSTM model’s performance across varied input sequence 
lengths (30, 50, and 70 days) elucidates the nuanced relationship between sequence length and 
predictive accuracy, assessed through key performance indicators including RMSE, MAE, MAPE, 
and R2. A general trend of enhanced predictive accuracy with increased input sequence length 
is discernible, as longer sequences give the model a more comprehensive historical context, 
reducing prediction errors. Nevertheless, this enhancement is not consistent across all stocks. 
For some, there may be a threshold beyond which extending the sequence length yields 
diminishing returns, as evidenced by fluctuations in RMSE and MAE values. This implies that 
overly extensive sequences may inadvertently introduce noise or foster overfitting, compromising 
prediction quality. The MAPE metric, denoting percentage errors, corroborates these findings, 
indicating that while longer sequences typically correlate with reduced percentage errors, the 
model may still grapple with predicting extreme market fluctuations, occasionally resulting in 
elevated MAPE scores. 
 
Additionally, R2 values, reflecting the model’s capacity to capture stock price variations, generally 
increase with longer sequences, signifying enhanced explanatory power. However, this trend may 
plateau or reverse beyond a certain sequence length. In summary, the relationship between input 
sequence length and model performance is complex and non-linear; optimizing sequence length 
necessitates a delicate balance between harnessing more historical information and mitigating 
the risks of noise introduction and overfitting. 

3.2 Optimal Input Sequence Length 

After analyzing the performance metrics of the StacBi LSTM model for predicting stock prices 
using input sequence lengths of 30, 50, and 70 days, an optimal range for prediction was 
observed. The 50-day input sequence length often results in lower RMSE, MAE, and MAPE 
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values than shorter or longer alternatives, making it a balanced choice. This implies that it 
effectively assimilates an adequate amount of historical data for precise predictions while 
concurrently circumventing the perils of noise and overfitting associated with unduly lengthy 
sequences. Shorter sequences like the 30-day option may enhance computational efficiency due 
to their reduced data and computational demands. Still, they risk neglecting longer-term trends 
vital for accurate forecasting, a drawback particularly pronounced in turbulent market conditions. 
Conversely, the 70-day sequence length holds the potential to discern more complex stock price 
patterns but at the expense of heightened computational requirements and elevated overfitting 
risk, especially in volatile and rapidly changing markets. Thus, the 50-day input sequence length 
balances efficiency with predictive accuracy, capturing a comprehensive range of short- to 
medium-term patterns while averting the extremes of sequence length. Nonetheless, it is crucial 
to acknowledge that the ideal sequence length may vary, contingent upon the individual 
characteristics of each stock and the broader market context. 

3.3 Comparative Analysis 

The comparative analysis of performance metrics across varying input sequence lengths (30, 50, 
and 70 days) for the StacBi LSTM model elucidates the inherent trade-offs between prediction 
precision and explanatory power and the challenges in optimizing both concurrently. Shorter 
sequences, such as the 30 days, exhibit higher precision in forecasting imminent stock price 
movements for certain stocks, as evidenced by lower RMSE, MAE, and MAPE values. However, 
these stocks tend to display slightly reduced R2 values, indicating a compromise in the model’s 
ability to account for overall price variability due to the restricted historical context. Conversely, a 
70-day sequence length often results in enhanced explanatory power, capturing a broader 
spectrum of price fluctuations as reflected in higher R2 values. Yet, it can also lead to increased 
prediction errors and potential overfitting, as denoted by elevated RMSE, MAE, and MAPE 
scores. Instances where the model excels in either precision or explanatory power, but not both, 
underscore the complexity of achieving an optimal balance and highlight the strategic nature of 
selecting an input sequence length tailored to specific stocks and market conditions. Shorter 
sequences may be preferable for day traders prioritizing immediate accuracy, while longer 
sequences could benefit investors seeking a comprehensive understanding of overall price 
trends. This analysis ultimately emphasizes the criticality of a nuanced understanding of each 
performance metric and the necessity of a strategic and informed approach to balance precision 
with explanatory power, aligning with market participants’ specific objectives and strategies. 
 
The StacBi LSTM model demonstrates notable strengths in stock price prediction, capitalizing on 
its unique architecture to capture long-term dependencies and temporal patterns within financial 
data. Its dynamic adaptability to changing market conditions, combined with a deep architecture 
skilled at handling non-linearities and noisy data, offers a comprehensive framework for precise 
predictions and insightful market analysis despite sudden market shifts and volatility challenges. 
In the Indonesian Stock Exchange context, the model showcases its versatility, effectively 
interpreting local market patterns while navigating periods of volatility characteristic of emerging 
markets. Nonetheless, the research process highlighted data-related challenges, necessitating 
meticulous preprocessing to maintain data integrity and prevent biases. Balancing model 
complexity with computational demands is crucial, as excessive complexity can lead to overfitting 
and inefficient resource use. The StacBi LSTM model is a valuable tool for traders and investors, 
with optimal input sequence length selection enhancing predictive accuracy and informing robust 
trading strategies. Integrating the model with other predictive techniques, external factors, and 
novel architectures presents promising avenues for advancing stock price prediction capabilities. 

4. KESIMPULAN 

This research paper investigated the application of the StacBi LSTM model for stock price 
prediction. The key findings highlight that the choice of input sequence length significantly impacts 
the model’s performance. An optimal input sequence length was identified through rigorous 
evaluation, offering a balance between computational efficiency and predictive accuracy. Notably, 
the StacBi LSTM model demonstrated a remarkable ability to capture stock price trends by 
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effectively incorporating long-term dependencies and temporal patterns. The model’s strengths 
surpassed traditional methods, enabling traders and investors to make more informed decisions. 
 
This study opens avenues for practical applications and future enhancements in stock price 
prediction. The insights gained from the optimal input sequence length can guide decision-making 
for predictive models. At the same time, the StacBi LSTM’s adeptness in capturing stock price 
trends underscores its potential in real-world financial forecasting scenarios. Future directions 
could involve hybrid approaches, integrating external factors, and addressing market shifts. In 
conclusion, this research underscores the significance of leveraging deep learning techniques 
like the StacBi LSTM for stock price prediction, presenting an impactful tool that bridges the gap 
between data-driven insights and effective financial strategies. 
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