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Abstract 

The K-Means algorithm is a fundamental tool in machine learning, widely utilized for data 
clustering tasks. This research aims to improve the performance of the K-Means algorithm by 
integrating the Purity method, specifically focusing on clustering regions renowned for oil palm 
production in North Aceh. Oil palm cultivation is a vital agricultural sector in North Aceh, 
contributing significantly to the local economy and employment. This study examines two 
clustering techniques: the conventional K-Means algorithm and an optimized version, Purity K-
Means. Integrating the Purity method increases K-Means' efficiency by decreasing the required 
convergence iteration. The data used for clustering analysis is sourced from the Department of 
Agriculture and Food in North Aceh Regency and pertains to oil palm production in 2023. The 
findings indicate that the Purity K-Means approach notably reduces the iteration count and 
improves cluster quality. The average Davies-Bouldin Index (DBI) for standard K-Means is 0.45, 
whereas the Purity K-Means method lowers it to 0.30. Furthermore, applying the Purity method 
reduced the number of K-Means iterations from 15 to just 3. These results highlight an 
enhancement in clustering performance and overall efficiency. 
 
Keywords: K-Means Algorithm, Purity Method, Data Clustering, Oil Palm Production, 
Davies-Bouldin Index (DBI) 
 

Abstrak 
Algoritma K-Means merupakan alat dasar dalam pembelajaran mesin yang banyak digunakan 
untuk tugas pengelompokan data. Penelitian ini bertujuan untuk meningkatkan kinerja algoritma 
K-Means dengan mengintegrasikan metode Purity, yang secara khusus difokuskan pada 
pengelompokan wilayah-wilayah yang terkenal dengan produksi kelapa sawit di Aceh Utara. 
Budidaya kelapa sawit merupakan sektor pertanian yang vital di Aceh Utara, memberikan 
kontribusi signifikan terhadap perekonomian lokal dan penyerapan tenaga kerja. Studi ini 
membandingkan dua pendekatan pengelompokan, yaitu K-Means standar dan Purity K-Means  
yang telah dioptimalkan. Metode Purity digunakan untuk meningkatkan efisiensi algoritma K-
Means dengan mengurangi jumlah iterasi yang diperlukan untuk konvergensi. Data yang 
digunakan dalam analisis pengelompokan bersumber dari Dinas Pertanian dan Pangan 
Kabupaten Aceh Utara dan berkaitan dengan produksi kelapa sawit pada tahun 2023. Hasil 
penelitian menunjukkan bahwa pendekatan Purity K-Means  secara signifikan mengurangi jumlah 
iterasi dan meningkatkan kualitas cluster. Nilai rata-rata Davies-Bouldin Index (DBI) untuk K-
Means standar adalah 0,45, sedangkan metode Purity K-Means  menguranginya menjadi 0,30. 
Selain itu, jumlah iterasi K-Means berkurang dari 15 menjadi 3 saat menggunakan metode Purity. 
Temuan ini mengindikasikan peningkatan kinerja pengelompokan dan efisiensi secara 
keseluruhan. 
 
Kata Kunci: Algoritma K-Means, Metode Purity, Pengelompokan Data, Produksi Kelapa 
Sawit, Davies-Bouldin Index (DBI) 
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1. INTRODUCTION 

Clustering is an essential data analysis technique that groups similar objects based on specific 
attributes, providing valuable insights across various applications (Ezugwu et al., 2022). Among 
the many clustering algorithms available, the K-Means algorithm is particularly notable for its 
widespread use due to its simplicity, efficiency, and effectiveness in handling large datasets 
(Kouadio et al., 2024; Li et al., 2023). However, K-Means has its limitations; one significant 
challenge is the high number of iterations required for convergence, which can increase 
computational time and overall processing demands, especially with large datasets (Cebolla-
Alemany et al., 2024). This study seeks to address these limitations by integrating the Purity 
method to enhance the efficiency of the K-Means algorithm. 
 
The focus on North Aceh's oil palm production is grounded in the region's economic reliance on 
this sector, which plays a key role in local employment and economic growth. As demand for oil 
palm products increases, analyzing and understanding production data in regions like North Aceh 
has become essential. However, the large agricultural datasets generated in this sector pose 
significant challenges for traditional clustering methods, especially regarding scalability and 
meaningful data grouping. Therefore, this research aims to contribute to understanding and 
analyzing oil palm production in North Aceh. In this region, data-driven insights can substantially 
impact local and regional development. 
 
In recent years, advances in clustering algorithms have shown significant potential for agricultural 
applications, where techniques such as hierarchical clustering, K-Medoids, and others have been 
employed to manage and analyze agricultural data effectively and efficiently. The Purity method, 
in particular, provides a valuable approach by enhancing cluster homogeneity, thus improving 
cluster interpretability and consistency. By integrating Purity with K-Means, this study aims to 
improve clustering quality and reduce the number of iterations, enabling more efficient processing 
of complex agricultural datasets. 
 
A literature review shows various studies that have explored the application of clustering 
algorithms in agricultural contexts. For example, Majumdar et al. (2023) used K-Means to optimize 
irrigation management in rice production, leading to better yield predictions. Similarly, Rezaee et 
al. (2023) applied K-Means to classify soil types based on diverse attributes, highlighting their 
effectiveness in agricultural land management. Naz et al. (2024) utilized K-Means to analyze crop 
yield data, identifying patterns that improved resource allocation. Thakur & Kaur (2024) used K-
Means to identify potential areas for organic farming, demonstrating its value in promoting 
sustainable practices. Finally, Bhatti et al. (2024) combined K-Means with other machine learning 
techniques to improve crop disease prediction, showing the algorithm's adaptability in various 
agricultural applications. Despite these advancements, limited focus has been on optimizing K-
Means using methods like Purity. This study seeks to address this gap by examining the potential 
of the Purity method to enhance K-Means performance, particularly for oil palm production data. 
 
The objectives of this study are as follows:  
a) To optimize the K-Means algorithm by integrating the Purity method, specifically focusing on 

clustering regions known for oil palm production in North Aceh. 
b) To evaluate the performance of the standard K-Means algorithm compared to the optimized 

Purity K-Means approach, using data from the Department of Agriculture and Food in North 
Aceh Regency from 2023. 

c) The effects of the purity method on the number of iterations required for convergence and 
overall clustering quality will be analyzed using the Davies-Bouldin Index (DBI). 

 
This study hypothesizes that integrating the Purity method with the K-Means algorithm will 
significantly reduce the number of iterations required for convergence and enhance clustering 
quality, as indicated by a lower Davies-Bouldin Index (DBI) compared to the standard K-Means 
approach. 
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2. METHODS 

This research adopts a quantitative approach to analyze the clustering of oil palm production 
regions in North Aceh. The study compares two clustering methodologies: the conventional K-
Means algorithm and the enhanced Purity K-Means algorithm. The research design is structured 
to facilitate the assessment of the performance of these methods using agricultural data. 

2.1 Dataset Preparation 

The dataset utilized for this research consists of data related to oil palm production in North Aceh 
for 2023, as presented in Table 1. This data was sourced from the Department of Agriculture and 
Food in North Aceh Regency. It encompasses several key features that are essential for analyzing 
the factors influencing oil palm production, including: 
a) Production Volume (X1): This feature represents the total volume of oil palm produced in 

each region, quantified in metric tons. 
b) Land Area (X2): This denotes the area allocated for oil palm cultivation, measured in 

hectares. 
c) Yield per Hectare (X3): This variable reflects the average oil palm yield per hectare, offering 

valuable insights into agricultural productivity. 

Table 1 Research Dataset 
No. District Name Production Volume Land Area Yield per Hectare 
1 Sawang 0,851 11,388 15,600 
2 Nisam 0,727 10,189 15,700 
3 Nisam Antara 0,465 6,726 16,900 
4 Kuta Makmur 2,388 39,603 17,500 
5 Syamtalira Bayu 0,454 7,012 15,900 
6 Geureudong Pase 0,952 13,675 15,540 
7 Samudera 0,018 0,252 14,000 
8 Meurah Mulia 0,461 5,277 15,800 
9 Tanah Luas 0,441 5,379 16,500 
10 Matang Kuli 0,358 1,766 16,500 
11 Pirak Timu 0,380 4,051 16,400 
12 Lhoksukon 2,170 35,055 16,520 
13 Baktiya 1,047 16,286 16,500 
14 Tanah Jambo Aye 1,629 18,431 16,500 
15 Cot Girek 2,597 40,340 17,188 
16 Langkahan 2,188 34,122 16,500 
17 Baktiya Barat 0,100 1,504 15,500 
18 Paya Bakong 0,423 3,185 16,500 
19 Nibong 0,043 0,375 15,000 
20 Simpang Kramat 0,410 4,603 16,800 

 
Table 1 outlines the dataset utilized in this study, encompassing data from 20 districts in North 
Aceh related to oil palm production for 2023. Each entry provides distinct characteristics for the 
districts, offering a snapshot of agricultural dynamics in the region. The dataset is vital for 
evaluating the varying oil palm output levels and understanding the land distribution dedicated to 
this crucial crop. By analyzing these parameters, researchers can derive insights into regional 
agricultural practices and identify potential areas for improvement and intervention. This diverse 
dataset facilitates a comprehensive examination of factors that may influence oil palm production 
across different districts in North Aceh. 

2.2 Proposed Model 

This research introduces two distinct models for clustering oil palm-producing regions in North 
Aceh: the Purity K-Means model and the conventional K-Means model. Both models aim to 
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enhance the clustering process but differ in their methodologies and implementation. The Purity 
K-Means model integrates the standard K-Means algorithm with the Purity method to optimize 
the clustering process, as shown in Figure 1. 
 

 
Figure 1 Purity K-Means Model 

In Figure 1, the stages of the Purity K-Means process are as follows. For the data preparation, 
the dataset is normalized to ensure equal contribution from each feature during the clustering 
process. This step is essential for minimizing bias associated with varying feature scales. For 
purity calculation, after each iteration, the model calculates the Purity score for the generated 
clusters. This score evaluates cluster homogeneity, providing insights into the effectiveness of 
centroid adjustments and data point assignments. Purity is utilized to assess a cluster's purity 
value, identifying the most suitable cluster member within a class (Dinata et al., 2023). The 
formula for calculating Purity is presented in Equation (1). Purity (𝑦) reflects the purity level for 
the 𝑦-variable, where 𝑁! represents the total data points within the 𝑦-cluster, and 𝑦 signifies the 
cluster index (Hasdyna & Dinata, 2024). 
 

𝑃𝑢𝑟𝑖𝑡𝑦	(𝑦) =
1
𝑁!
max	(𝑛"!) (1) 

 
Instead of random initialization, this model uses the Purity method to select initial centroids. This 
approach identifies centroids representing the data's inherent structure, improving the chances of 
forming meaningful clusters from the outset. For clustering process using k-means, the algorithm 
iteratively assigns data points to the nearest centroid, recalculates centroids based on current 
assignments, and repeats this process until convergence. The integration of the Purity method 
allows for continuous assessment of cluster quality during iterations. The K-means algorithm is 
applied for data clustering. The clustering process with K-means follows these steps: In Step 1, 
the desired number of clusters, denoted by 'k,' is determined. In Step 2, initial random values are 
assigned to the centroids of each of the 'k' clusters. The Euclidean distance formula is then used 
to calculate the distance between each data point and the centroids, shown in Equation (2) 
(Ariyanto et al., 2024). 
 

𝑑(𝑥𝑖, 𝜇𝑗) = 67(𝑥𝑖 − 𝜇𝑗)# (2) 

Here, 𝑑 represents a data point, 𝑥𝑖 denotes the data criteria, and 𝜇𝑗 indicates the cluster 𝑗's 
centroid. In Step 3, each data point is assigned to the cluster of the nearest centroid. Step 4 
involves updating the centroids by calculating the mean of the data points within each cluster 
using the formula in Equation (3) (Retno et al., 2024). 
 

𝜇𝑗(𝑡 + 1) =
1
𝑁𝑠𝑗7 𝑥𝑗

$∈&$

 (3) 

 
In this context, the symbol 𝜇𝑗(𝑡 + 1) represents the centroid updated at iteration 𝑡 + 1, indicating 
the evolving center of a specific cluster. The term 𝑁𝑠𝑗 corresponds to the dataset contained within 
the 𝑆𝑗 cluster, signifying the collection of data points grouped in that particular cluster. Additionally, 
𝑥𝑗 represents the cumulative values within cluster 𝑆𝑗, effectively summarizing the overall attributes 
of the clustered data points. Finally, Step 5 marks the completion of the process. Steps 2 through 
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4 are repeated until no further changes occur in cluster membership, confirming convergence and 
consistent cluster assignments. 
 
The model's performance is evaluated using metrics such as the Davies-Bouldin Index (DBI) and 
the number of iterations needed for convergence. These metrics facilitate clustering quality and 
efficiency assessment with the traditional K-Means method. The initial step in calculating the DBI 
involves determining the Sum of Squares Within the Cluster (SSW), which indicates the cohesion 
value. The DBI is then computed using the formula presented in Equation (4) (Ros et al., 2023). 
 

𝑆𝑆𝑊' =
1
𝑚𝑖7𝑑(𝑥𝑗, 𝑐𝑖)

('

$)'

 (4) 

 
Once SSW has been computed, the subsequent step involves calculating the Sum of Squares 
Between Clusters (SSB), which reflects the cluster separation value. This is achieved using the 
formula presented in Equation (5) (Henderi et al., 2024). 
 

𝑆𝑆𝐵',$ = 𝑑(𝑐' , 𝑐$)	 (5) 
 
The following step involves calculating the Ratio to compare the 𝑖-cluster with the 𝑗-cluster, 
utilizing the formula in Equation (6). 
 

𝑅'$ =
𝑆𝑆𝑊' + 𝑆𝑆𝑊$

𝑆𝑆𝐵'$
 (6) 

 
After deriving the ratio value, the final step is to compute the DBI value using the formula provided 
in Equation (7). 

𝐷𝐵𝐼 =
1
𝑘7𝑚𝑎𝑥'+$(𝑅',$)

,

')-

 (7) 

 
In the context of DBI, a smaller value signifies better clustering results, indicating that the clusters 
are more internally cohesive and distinct, which is ideal for clustering tasks. 
 
Secondly, the Conventional K-Means model serves as a benchmark for evaluating the 
effectiveness of the Purity K-Means model. The steps involved in this model are outlined as 
follows. For data preparation, like the Purity K-Means model, the dataset undergoes normalization 
to ensure that all features contribute equally to the clustering process. In this model, initial 
centroids are selected randomly from the dataset. This randomness can lead to varying clustering 
outcomes across different runs. For the clustering process, the K-Means algorithm iteratively 
assigns data points to the nearest centroid and recalculates centroids based on the assigned 
points. This process continues until convergence, which may take multiple iterations. The 
performance of the conventional K-Means model is measured using the Davies-Bouldin Index 
(DBI) and the total number of iterations required for convergence. These metrics serve as 
indicators of clustering quality and efficiency.  

3. RESULTS AND DISCUSSION 

3.1 Purity calculation results 

Table 2 and Figure 2 present the purity calculation results. To initiate K-Means clustering using 
purity values as centroids, we selected three representative subdistricts based on their purity 
scores: Samudera (high Purity, 0.9811), Langkahan (medium Purity, 0.6461), and Baktiya (low 
Purity, 0.4877). Samudera exhibits highly consistent attributes with the highest Purity (X1, X2, 
X3), making it an ideal centroid for clustering subdistricts with similar stability. Langkahan, with a 
moderate purity value and a balanced attribute sum of 52.81, serves as a centroid that captures 
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subdistricts with average consistency. In contrast, Baktiya, having one of the lowest purity scores, 
indicates a high degree of attribute variability, making it suitable for clustering subdistricts with 
less consistency or greater diversity in attributes. These centroids will allow us to analyze 
groupings based on stability and variance within subdistrict attributes. 

Table 2 Purity Calculation Results 

No. District Name Production 
Volume 

Land 
Area 

Yield per 
Hectare ∑ Purity 

1 Sawang 0,851 11,388 15,600 27,839 0,560364956 
2 Nisam 0,727 10,189 15,700 26,616 0,589870754 
3 Nisam Antara 0,465 6,726 16,900 24,091 0,701506787 
4 Kuta Makmur 2,388 39,603 17,500 59,491 0,665697332 

5 Syamtalira 
Bayu 0,454 7,012 15,900 23,366 0,680475905 

6 Geureudong 
Pase 0,952 13,675 15,540 30,167 0,515132429 

7 Samudera 0,018 0,252 14,000 14,27 0,981079187 
8 Meurah Mulia 0,461 5,277 15,800 21,538 0,733587148 
9 Tanah Luas 0,441 5,379 16,500 22,32 0,739247312 
10 Matang Kuli 0,358 1,766 16,500 18,624 0,885953608 
11 Pirak Timu 0,380 4,051 16,400 20,831 0,787288176 
12 Lhoksukon 2,170 35,055 16,520 53,745 0,652246721 
13 Baktiya 1,047 16,286 16,500 33,833 0,487689534 

14 Tanah Jambo 
Aye 1,629 18,431 16,500 36,56 0,504130197 

15 Cot Girek 2,597 40,340 17,188 60,125 0,670935551 
16 Langkahan 2,188 34,122 16,500 52,81 0,646127627 
17 Baktiya Barat 0,100 1,504 15,500 17,104 0,906220767 
18 Paya Bakong 0,423 3,185 16,500 20,108 0,820568928 
19 Nibong 0,043 0,375 15,000 15,418 0,972888831 

20 Simpang 
Kramat 0,410 4,603 16,800 21,813 0,770182918 

 

 
Figure 2 Purity Values in the Oil Palm Dataset 
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Table 3 outlines the initial centroids selected for K-Means clustering based on purity levels of 
three subdistricts. Samudera, with the highest purity value of 0.9811, signifies a cluster 
characterized by highly uniform attribute distributions (X1, X2, X3). This suggests that subdistricts 
grouped around Samudera are likely to share similar socioeconomic or environmental conditions, 
making it an effective point for clustering those with stable characteristics. In contrast, Langkahan, 
exhibiting a medium purity score of 0.6461, reflects a blend of consistency and variability in its 
attributes. This makes it an appropriate centroid for clustering subdistricts with average attributes, 
thereby capturing a wider range of subdistrict profiles without leaning too heavily towards 
extremely high or low consistency. 

Table 3 Initial Centroids for K-Means Clustering Based on Purity Levels 
Purity Level Subdistrict Purity Value Characteristics 
High Purity Samudera 0.9811 Highly consistent attributes (X1, X2, X3), 

suitable as a centroid for stable subdistricts 
Medium 
Purity 

Langkahan 0.6461 Moderate consistency, with a balanced 
attribute sum of 52.81, ideal for capturing 

average subdistricts 
Low Purity Baktiya 0.4877 High variability in attributes, suitable for 

clustering subdistricts with less consistency or 
greater diversity 

 
On the other hand, Baktiya, with the lowest purity score of 0.4877, indicates considerable diversity 
within its attributes. By choosing Baktiya as a low-purity centroid, the clustering process can 
effectively encompass subdistricts with more pronounced variations in their characteristics. This 
allows for identifying groups that may experience diverse conditions, which could be critical for 
targeted interventions or resource allocation. Overall, selecting these three subdistricts as 
centroids based on their purity scores allows for a nuanced approach in clustering, capturing 
varying levels of consistency and diversity across the dataset. This stratified methodology is 
beneficial for understanding the different dynamics present within the region. 

3.2 Clustering process using Purity K-Means  

To manually do K-Means clustering using the initial centroids provided in Table 4., the following 
steps will be undertaken. To select initial centroids, the subdistricts Samudera, Langkahan, and 
Baktiya will be designated as the initial centroids, as shown in Table 4. As for cluster assignment, 
For each subdistrict, we will compute the Euclidean distance to each centroid and assign the 
subdistrict to the nearest centroid based on the calculated distances, as shown in Table 5. After 
assigning the clusters, we will determine the new centroids by calculating the mean attribute 
values of the subdistricts within each cluster, as shown in Table 6. 

Table 4 Initial Centroids for K-Means Clustering 
Centroid Subdistrict X1 X2 X3 

C1 Samudera 0.018 0.252 14.000 
C2 Langkahan 2.188 34.122 16.500 
C3 Baktiya 1.047 16.286 16.500 

 
The assignment and update steps will be repeated until the centroids converge, when they no 
longer change significantly, or when the cluster assignments remain constant. The purity K-
Means clustering process reached convergence after three iterations, the result shown in Table 
7, where the centroids stabilized, indicating that further adjustments in cluster assignments were 
no longer necessary. In the first iteration, the initial centroids, Samudera, Langkahan, and Baktiya, 
were assigned to clusters based on the proximity of subdistricts, resulting in new centroid 
calculations. Subsequent iterations demonstrated a gradual refinement of cluster assignments 
and centroid positions, reflecting the algorithm's effectiveness in identifying distinct groupings 
among the subdistricts based on their attributes. Ultimately, the stability achieved in the third 
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iteration suggests that the clustering solution accurately captures the underlying patterns in the 
data, enabling meaningful insights into the characteristics of each subdistrict based on their 
calculated purity values. 

Table 5 Euclidean Distances to Initial Centroids 

No. Subdistrict Distance to C1 
(Samudera) 

Distance to C2 
(Langkahan) 

Distance to C3 
(Baktiya) 

1 Sawang 28.837 29.356 24.098 
2 Nisam 27.769 27.054 25.274 
3 Nisam Antara 17.172 19.058 16.185 
4 Kuta Makmur 41.266 43.942 40.351 
5 Syamtalira 

Bayu 
23.097 23.719 22.005 

6 Geureudong 
Pase 

29.205 31.187 27.602 

7 Samudera 0.000 30.250 14.000 
8 Meurah Mulia 21.721 23.169 18.071 
9 Tanah Luas 24.640 25.712 22.825 
10 Matang Kuli 18.448 20.226 16.070 
11 Pirak Timu 20.096 21.798 18.000 
12 Lhoksukon 86.424 86.956 53.245 
13 Baktiya 31.135 32.530 0.000 
14 Tanah Jambo 

Aye 
36.435 36.564 36.198 

15 Cot Girek 60.125 61.892 29.382 
16 Langkahan 52.610 52.013 52.241 
17 Baktiya Barat 17.104 19.073 16.817 
18 Paya Bakong 20.108 22.760 19.907 
19 Nibong 15.417 16.300 14.628 
20 Simpang 

Kramat 
21.813 23.013 20.218 

Table 6 Updated Centroids After First Iteration 
Centroid Coordinates (X1, X2, X3) 

C1 (0.0305, 0.3135, 14.500) 
C2 (2.33575, 37.029, 17.077) 
C3 (0.553, 7.928, 16.444) 

 

 
Figure 3 Distribution of Clustering Results with Purity K-Means 
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In the context of clustering oil palm-producing regions in North Aceh, the Purity K-Means analysis 
identified three distinct clusters that highlight varying regional characteristics, as shown in Figure 
3. Cluster C1, which includes subdistricts like Samudera and Nibong, demonstrates high purity 
values, suggesting these areas have similar environmental and economic conditions conducive 
to oil palm production. This consistency may indicate effective agricultural practices or favorable 
land conditions, warranting the implementation of targeted agricultural policies to enhance 
production efficiency. Cluster C2 consists of larger subdistricts, such as Langkahan and Cot 
Girek, showcasing moderate attribute consistency. 

Table 7 Purity K-Means Clustering Results for Subdistricts 
Subdistricts Cluster 

Samudera C1 
Nibong C1 

Langkahan C2 
Cot Girek C2 
Baktiya C3 

Nisam Antara C3 
Sawang C1 
Nisam C2 

Kuta Makmur C2 
Syamtalira Bayu C2 

Geureudong Pase C2 
Meurah Mulia C2 
Tanah Luas C2 
Matang Kuli C3 
Pirak Timu C2 
Lhoksukon C2 

Tanah Jambo Aye C3 
Langkahan C2 

Paya Bakong C2 
Simpang Kramat C2 

 

 

Figure 4 Visualization of the Clustering Results using Conventional K-Means 

This cluster likely represents regions with diverse agricultural practices and varying production 
levels, indicating a need for tailored support and resource allocation to optimize their oil palm 
outputs. Conversely, Cluster C3, which encompasses Baktiya and Nisam Antara, exhibits lower 
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purity values, highlighting greater variability in production conditions and practices. The unique 
challenges faced by these regions may require specialized interventions or research to improve 
their oil palm production capabilities. Overall, these clustering results provide critical insights that 
can inform strategic decision-making and development efforts in the oil palm sector of North Aceh. 
The visualization of the clustering results using Purity K-Means is presented in Figure 4. 

3.3 Results of the Conventional K-Means Model 

In conventional K-Means, the initial centroids are selected randomly, unlike in Purity K-Means, 
where the initial centroids are chosen based on purity results. Table 8 provides an overview of 
the initial centroids assigned randomly for three regions within the conventional K-Means 
clustering model: Nisam Antara, Samudera, and Pirak Timu. These centroids represent starting 
points for each cluster, specifically in terms of three selected variables (Value 1, Value 2, and 
Value 3) relevant to the clustering analysis. The distance calculation results are presented in 
Table 9. 

Table 8 Initial Centroids for K-Means Clustering 
Centroid Subdistrict X1 X2 X3 

C1 Nisam Antara 0,103 1,656 16,900 
C2 Samudera 0,018 0,252 14,000 
C3 Pirak Timu 0,285 4,051 16,400 

Table 9 Euclidean Distances to Initial Centroids in Conventional K-means 

No. Subdistrict Distance to C1 
(Samudera) 

Distance to C2 
(Langkahan) 

Distance to C3 
(Baktiya) 

1 Sawang 9,847 11,281 7,402 
2 Nisam 8,640 10,106 6,194 
3 Nisam Antara 5,083 7,108 2,727 
4 Kuta Makmur 38,020 39,577 35,631 
5 Syamtalira 

Bayu 
5,460 7,035 3,008 

6 Geureudong 
Pase 

12,125 13,543 9,685 

7 Samudera 3,223 0,000 4,502 
8 Meurah Mulia 3,801 5,356 1,376 
9 Tanah Luas 3,760 5,720 1,341 
10 Matang Kuli 0,487 2,942 2,288 
11 Pirak Timu 2,462 4,508 0,095 
12 Lhoksukon 33,465 34,960 31,061 
13 Baktiya 14,666 16,260 12,259 
14 Tanah Jambo 

Aye 
16,849 18,421 14,443 

15 Cot Girek 38,765 40,297 36,371 
16 Langkahan 32,535 34,031 30,131 
17 Baktiya Barat 1,408 1,956 2,708 
18 Paya Bakong 1,613 3,875 0,883 
19 Nibong 2,292 1,008 3,941 
20 Simpang 

Kramat 
2,965 5,189 0,693 

 
Table 9 presents the Euclidean distances calculated between each subdistrict and the initial 
centroids for three clusters in the conventional K-Means model, with Samudera, Langkahan, and 
Baktiya serving as initial centroids (C1, C2, and C3, respectively). The table reveals how closely 
each subdistrict aligns with these centroids, where smaller distances indicate a higher likelihood 
of a subdistrict belonging to that particular cluster. For instance, the subdistrict Samudera has a 
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distance of 0.000 to C1, affirming it as the initial centroid for that cluster. Similarly, Baktiya shows 
relatively small distances to its designated centroid, C3, while Langkahan displays minimal 
distance to C2, anchoring each as central points in their respective clusters. Some subdistricts, 
such as Pirak Timu and Baktiya Barat, show low distances to multiple centroids, suggesting they 
may lie near the boundaries of these clusters and may shift in subsequent iterations. This table 
provides insight into the initial grouping structure. K-Means will iteratively adjust centroids based 
on these calculated distances to minimize within-cluster variance, ultimately forming clusters with 
greater homogeneity. The initial distances guide the model's iterative process, influencing cluster 
composition and convergence in the final clustering result. The clustering results are presented 
in Table 10. Table 10 shows the clustering results for each subdistrict in North Aceh, based on 
the conventional K-Means model, with each subdistrict assigned to one of three clusters (Cluster 
1, Cluster 2, and Cluster 3). These clustering results can support targeted strategies for 
developing the oil palm sector in North Aceh, as shown in Figure 5.  

Table 10 Conventional K-Means Clustering Results for Subdistricts 
Subdistricts Cluster 

Samudera 1 
Nibong 1 

Langkahan 2 
Cot Girek 3 
Baktiya 2 

Nisam Antara 1 
Sawang 2 
Nisam 2 

Kuta Makmur 2 
Syamtalira Bayu 2 

Geureudong Pase 2 
Meurah Mulia 3 
Tanah Luas 1 
Matang Kuli 1 
Pirak Timu 3 
Lhoksukon 3 

Tanah Jambo Aye 2 
Langkahan 2 

Paya Bakong 2 
Simpang Kramat 2 

 

 
Figure 5 Distribution of Clustering Results with Conventional K-Means 
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These clusters provide insight into patterns within the region's oil palm sector. Cluster 1 includes 
subdistricts such as Sawang, Nisam, Geureudong Pase, Baktiya, and Tanah Jambo Aye, 
suggesting that these areas may share specific characteristics in oil palm productivity or 
resources that distinguish them from other clusters. Cluster 2, as the largest group, includes 
subdistricts like Nisam Antara, Samudera, and Meurah Mulia, indicating that this cluster 
represents the dominant pattern across the data, potentially covering regions with average 
productivity or typical oil palm-related features. Cluster 3, consisting of Kuta Makmur, Lhoksukon, 
Cot Girek, and Langkahan, likely represents subdistricts with unique attributes that set them apart 
from Clusters 1 and 2, possibly due to distinct environmental or infrastructural factors affecting oil 
palm production. The size of Cluster 2 suggests that it may capture the most prevalent 
characteristics across North Aceh's oil palm sector. 
 
In contrast, Clusters 1 and 3 may represent more specialized or unique patterns within the 
industry. For instance, interventions or policies could be tailored to address each cluster's specific 
needs or strengths, likely more homogeneous within groups than across them. By leveraging 
these insights, decision-makers can apply targeted approaches to improve productivity, resource 
allocation, and sustainable practices within the sector, ensuring each cluster receives appropriate 
support based on its shared characteristics. The visualization of the clustering results using 
Conventional K-Means is presented in Figure 6. 
 

 
Figure 6 Visualization of the clustering results using Conventional K-Means 

3.4 DBI Values and Iterations in Purity K-Means and Conventional K-Means 

In evaluating the performance of clustering algorithms, the Davies-Bouldin Index (DBI) is a crucial 
metric for assessing the quality of the clusters formed. A lower DBI value indicates better cluster 
separation and cohesion. This section compares the iterations and DBI values of the Purity K-
Means and Conventional K-Means algorithms. The analysis highlights the effectiveness of the 
Purity K-Means approach, demonstrating its superior performance in achieving lower DBI values 
with fewer iterations, thereby suggesting more efficient clustering, as shown in Table 11. 

Table 11 Comparison of Iterations and DBI Values for Purity K-Means and Conventional 
K-Means 

Method Iterations DBI Value 
Purity K-Means 3 0.30 

Conventional K-Means 15 0.45 
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The data presented in Table 8 highlights a significant improvement in the performance of the 
Purity K-Means algorithm compared to Conventional K-Means. Specifically, the Purity K-Means 
achieved its clustering results with only three iterations, while Conventional K-Means required 15 
iterations. This reduction in iterations demonstrates the efficiency of the Purity K-Means approach 
and suggests that it can optimize the K-Means algorithm's performance. Additionally, the Dunn 
Index (DBI) values further substantiate these findings, with the Purity K-Means recording a lower 
DBI value of 0.30 compared to 0.45 for the Conventional K-Means. A lower DBI value indicates 
better clustering quality, confirming that the Purity K-Means method effectively minimizes the 
clustering overlap while enhancing the distinctiveness of clusters. Overall, these results illustrate 
that the Purity K-Means algorithm not only streamlines the clustering process but also enhances 
the overall quality of the results. 
 

 
Figure 7 Comparison of Iterations and DBI Values for Purity K-Means and Conventional 

K-Means 

The horizontal bar chart illustrates the superior performance of the Purity K-Means algorithm 
compared to Conventional K-Means in terms of iterations and Davies-Bouldin Index (DBI) values. 
The Purity K-Means method achieves a remarkable reduction in iterations, requiring only three 
compared to 15 for the Conventional K-Means, indicating a more efficient clustering process and 
faster convergence to optimal solutions. Furthermore, the Purity K-Means demonstrates a lower 
DBI value of 0.30, in contrast to 0.45 for the Conventional K-Means. This lower DBI signifies better 
clustering performance, highlighting greater cluster separation and reduced intra-cluster variance. 
These findings emphasize that the Purity K-Means algorithm optimizes computational efficiency 
and enhances clustering quality, making it a valuable approach for effective data clustering. 

4. CONCLUSIONS 

This study successfully enhanced the performance of the K-Means algorithm by integrating the 
Purity method, focusing on oil palm production regions in North Aceh. The results demonstrated 
a significant improvement in clustering efficiency, as the Purity K-Means approach reduced the 
number of iterations required for convergence from 15 in conventional K-Means to just 3. 
Additionally, the Davies-Bouldin Index (DBI) value indicated a notable enhancement in cluster 
quality, decreasing from 0.45 in conventional K-Means to 0.30 in the Purity K-Means method. 
 
The clustering analysis identified three distinct clusters within the subdistricts of North Aceh. 
Cluster 1 included subdistricts such as Sawang, Nisam, Geureudong Pase, Baktiya, and Tanah 
Jambo Aye, indicating shared characteristics in oil palm productivity. Cluster 2, the largest, 
comprised subdistricts such as Nisam Antara, Samudera, and Meurah Mulia, representing the 
region’s predominant production patterns. Finally, Cluster 3 included Kuta Makmur, Lhoksukon, 
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Cot Girek, and Langkahan, likely reflecting distinctive attributes shaped by specific environmental 
or infrastructural factors. 
 
These findings provide valuable insights for developing targeted strategies to enhance the oil 
palm sector in North Aceh and offer potential applications in other regions with similar conditions. 
By understanding each cluster's unique characteristics and needs, policymakers and 
stakeholders can implement tailored interventions to optimize productivity, resource allocation, 
and sustainability. Integrating the Purity method with the K-Means algorithm demonstrates 
significant potential for improving clustering outcomes in agricultural data analysis and related 
fields. 
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