Perbandingan Random Forest dan Convolutional Neural Network dalam Memprediksi Peralihan Pelanggan

Authors

  • Dewa Adji Kusuma Institut Teknologi Telkom Purwokerto
  • Atika Ratna Dewi Institut Teknologi Telkom Purwokerto
  • Andreas Rony Wijaya Universitas Sebelas Maret

DOI:

https://doi.org/10.14421/jiska.2025.10.2.186-194

Keywords:

CNN, Customer Churn, Data Mining, Prediction, Random Forest

Abstract

The rapid growth of the telecommunications industry has increased competition among companies for customers. As a result, customers often switch services or terminate subscriptions. Retaining customers is very important as it is 10 times cheaper than acquiring new customers. This study compares Random Forest (RF) and Convolutional Neural Network (CNN) algorithms in predicting customer switching, using Correlation-based Feature Selection (CFS) and Recursive Feature Elimination (RFE) for data partitioning. Model evaluation using Confusion Matrix and Area Under Curve (AUC). The evaluation results show that the performance of CNN models with optimization parameters is superior. Using the CFS dataset, the test data evaluation results obtained an accuracy of 98%, AUC 0,96, precision 99%, recall 92%, and f1-score 96%. The best tuning result for CNN is 3 combinations of filter and kernel {[64&7], [32&3], [16&2]} and pool_size=2. The limitation of this research is how to handle the two algorithms being compared. Both use different approaches, namely Supervised Learning and Deep Learning.

References

AL-Najjar, D., Al-Rousan, N., & AL-Najjar, H. (2022). Machine Learning to Develop Credit Card Customer Churn Prediction. Journal of Theoretical and Applied Electronic Commerce Research, 17(4), 1529–1542. https://doi.org/10.3390/jtaer17040077

Li, A., Yang, T., Zhan, X., Shi, Y., & Li, H. (2024). Utilizing Data Science and AI for Customer Churn Prediction in Marketing. Journal of Theory and Practice of Engineering Science, 4(05), 72–79. https://doi.org/10.53469/jtpes.2024.04(05).10

de Lima Lemos, R. A., Silva, T. C., & Tabak, B. M. (2022). Propension to Customer Churn in a Financial Institution: A Machine Learning Approach. Neural Computing and Applications, 34(14), 11751–11768. https://doi.org/10.1007/s00521-022-07067-x

Gabhane, M. D., Suriya, A., & Kishor, S. B. (2022). Churn Prediction in Telecommunication Business Using CNN and ANN. Journal of Positive School Psychology, 2022(4), 4672–4680. https://journalppw.com/index.php/jpsp/article/view/4158

Husein, A. M., & Harahap, M. (2021). Pendekatan Data Science untuk Menemukan Churn Pelanggan pada Sector Perbankan dengan Machine Learning. Data Sciences Indonesia (DSI), 1(1), 8–13. https://doi.org/10.47709/dsi.v1i1.1169

Lalwani, P., Mishra, M. K., Chadha, J. S., & Sethi, P. (2022). Customer Churn Prediction System: A Machine Learning Approach. Computing, 104(2), 271–294. https://doi.org/10.1007/s00607-021-00908-y

Mawaddah, U., Armanto, H., & Setyati, E. (2021). Prediksi Karakteristik Personal Menggunakan Analisis Tanda Tangan dengan Mengggunakan Metode Convolutional Neural Network (CNN). Antivirus : Jurnal Ilmiah Teknik Informatika, 15(1), 123–133. https://doi.org/10.35457/antivirus.v15i1.1526

Muthmainah, & Cholil, M. (2022). Faktor yang Mempegaruhi Perilaku Peralihan Pelanggan: Peran Mediasi Kepuasan dan Kepercayaan Pelanggan. Jurnal Riset Bisnis dan Investasi, 7(3), 125–136. https://doi.org/10.35313/jrbi.v7i3.3437

Ojo, A. K. (2024). Predicting Customer Churn in Telecommunication Industry Using Convolutional Neural Network Model. SSRN Electronic Journal, 22(3), 54–59. https://doi.org/10.2139/ssrn.4983685

Rahman, M., & Kumar, V. (2020). Machine Learning Based Customer Churn Prediction in Banking. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1196–1201. https://doi.org/10.1109/ICECA49313.2020.9297529

Sandag, G. A. (2020). Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest. CogITo Smart Journal, 6(2), 167–178. https://doi.org/10.31154/cogito.v6i2.270.167-178

Saputro, I. W., & Sari, B. W. (2020). Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa. Creative Information Technology Journal, 6(1), 1. https://doi.org/10.24076/citec.2019v6i1.178

Singh, U., Rizwan, M., Alaraj, M., & Alsaidan, I. (2021). A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments. Energies, 14(16), 5196. https://doi.org/10.3390/en14165196

Suryana, N., Pratiwi, P., & Prasetio, R. T. (2021). Penanganan Ketidakseimbangan Data pada Prediksi Customer Churn Menggunakan Kombinasi SMOTE dan Boosting. IJCIT (Indonesian Journal on Computer and Information Technology), 6(1), 31–37. https://doi.org/10.31294/ijcit.v6i1.9545

Wicaksono, A., Anita, A., & Padilah, T. N. (2021). Uji Performa Teknik Klasifikasi untuk Memprediksi Customer Churn. Bianglala Informatika, 9(1), 37–45. https://doi.org/10.31294/bi.v9i1.9992

Yahaya, R., Abisoye, O. A., & Bashir, S. A. (2021). An Enhanced Bank Customers Churn Prediction Model Using a Hybrid Genetic Algorithm and K-Means Filter and Artificial Neural Network. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA), 52–58. https://doi.org/10.1109/CYBERNIGERIA51635.2021.9428805

Downloads

Published

2025-05-31

How to Cite

Kusuma, D. A., Dewi, A. R., & Wijaya, A. R. (2025). Perbandingan Random Forest dan Convolutional Neural Network dalam Memprediksi Peralihan Pelanggan. JISKA (Jurnal Informatika Sunan Kalijaga), 10(2), 186–194. https://doi.org/10.14421/jiska.2025.10.2.186-194

Issue

Section

Articles