Klasifikasi Penyakit pada Tanaman Berdasarkan Citra Daun Menggunakan Metode Convolutional Neural Network

Authors

  • Denis Aji Pangestu UIN Maulana Malik Ibrahim Malang
  • Okta Qomaruddin Aziz UIN Maulana Malik Ibrahim Malang
  • Cahyo Crysdian UIN Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.14421/jiska.2025.10.2.235-248

Keywords:

Classification, Image Classification, Convolutional Neural Network, Plant Disease, Agricultural

Abstract

The agricultural sector is a vital part of the economy, providing food, raw materials, and employment opportunities. In Indonesia, this sector faces significant challenges, such as low interest from younger generations and plant disease issues. Plant disease identification typically requires experienced experts, but this process is time-consuming and costly. This research aims to develop a plant disease classification model using Convolutional Neural Network (CNN) to assist farmers in identifying diseases in rice, corn, tomato, and potato plants based on leaf images. Testing was conducted with data splitting ratios of 70:30, 80:20, and 90:10, using both single-stage and multi-stage classification methods. The best results were achieved with an 80:20 data ratio using single-stage classification, with an average accuracy of 80%, precision of 80%, recall of 81%, and F1-score of 79%. This study demonstrates that the CNN method is effective in plant disease classification, with optimal performance at an 80:20 data ratio and single-stage classification. It is hoped that this research can help farmers quickly and accurately identify and manage plant diseases, as well as encourage innovation in the agricultural sector. The implementation of CNN in plant disease classification shows great potential in enhancing the efficiency and accuracy of disease detection, ultimately supporting the sustainability and development of the agricultural sector.

References

Ambarwari, A., Husni, E. M., & Mahayana, D. (2023). Perkembangan Paradigma Metode Klasifikasi Citra Penginderaan Jauh dalam Perspektif Revolusi Sains Thomas Kuhn. Jurnal Filsafat Indonesia, 6(3), 465–473. https://doi.org/10.23887/jfi.v6i3.53865

Anggiratih, E., Siswanti, S., Octaviani, S. K., & Sari, A. (2021). Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning. Jurnal Ilmiah SINUS, 19(1), 75–83. https://doi.org/10.30646/sinus.v19i1.526

Anggraeni, D. S., Widayana, A., Rahayu, P. D., & Rozikin, C. (2022). Metode Algoritma Convolutional Neural Network pada Klasifikasi Penyakit Tanaman Cabai. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 7(1), 73–78. https://doi.org/10.30998/string.v7i1.13304

Chellapandi, B., Vijayalakshmi, M., & Chopra, S. (2021). Comparison of Pre-Trained Models Using Transfer Learning for Detecting Plant Disease. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), 383–387. https://doi.org/10.1109/ICCCIS51004.2021.9397098

Felix, F., Wijaya, J., Sutra, S. P., Kosasih, P. W., & Sirait, P. (2020). Implementasi Convolutional Neural Network Untuk Identifikasi Jenis Tanaman Melalui Daun. Jurnal SIFO Mikroskil, 21(1), 1–10. https://doi.org/10.55601/jsm.v21i1.672

Guo, Y., & Wang, X. (2022). Modulation Signal Classification Algorithm Based on Denoising Residual Convolutional Neural Network. IEEE Access, 10, 121733–121740. https://doi.org/10.1109/ACCESS.2022.3221475

Hasan, Moh. A., Riyanto, Y., & Riana, D. (2021). Grape Leaf Image Disease Classification Using CNN-VGG16 Model. Jurnal Teknologi dan Sistem Komputer, 9(4), 218–223. https://doi.org/10.14710/jtsiskom.2021.14013

Irfansyah, D., Mustikasari, M., & Suroso, A. (2021). Arsitektur Convolutional Neural Network (CNN) Alexnet untuk Klasifikasi Hama pada Citra Daun Tanaman Kopi. Jurnal Informatika: Jurnal Pengembangan IT, 6(2), 87–92. https://doi.org/10.30591/jpit.v6i2.2802

Nawwar, N., Kasban, H., & Salama, M. (2021). Improvement of Confusion Matrix for Hand Vein Recognition Based on Deep-Learning Multi-Classifier Decisions. Arab Journal of Nuclear Sciences and Applications, 54(4), 133–146. https://doi.org/10.21608/ajnsa.2021.70450.1460

Oktaviana, U. N., Hendrawan, R., Annas, A. D. K., & Wicaksono, G. W. (2021). Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(6), 1216–1222. https://doi.org/10.29207/resti.v5i6.3607

Sabrina, S. A., & Maki, W. F. A. (2022). Klasifikasi Penyakit pada Tanaman Kopi Robusta Berdasarkan Citra Daun Menggunakan Convolutional Neural Network. EProceedings of Engineering, 9(3), 1919–1927. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/17997

Singh, V., & Misra, A. K. (2017). Detection of Plant Leaf Diseases Using Image Segmentation and Soft Computing Techniques. Information Processing in Agriculture, 4(1), 41–49. https://doi.org/10.1016/j.inpa.2016.10.005

Suganda, T., & Wulandari, D. Y. (2018). Curvularia sp. Jamur Patogen Baru Penyebab Penyakit Bercak Daun pada Tanaman Sawi. Jurnal Agrikultura, 29(3), 119–123. https://doi.org/10.24198/agrikultura.v29i3.22716

Tineges, R., Triayudi, A., & Sholihati, I. D. (2020). Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter dengan Metode Klasifikasi Support Vector Machine (SVM). Jurnal Media Informatika Budidarma, 4(3), 650–658. https://doi.org/10.30865/mib.v4i3.2181

Zalvadila, A. (2023). Klasifikasi Penyakit Tanaman Bawang Merah Menggunakan Metode SVM dan CNN. Jurnal Informatika: Jurnal Pengembangan IT, 8(3), 255–260. https://doi.org/10.30591/jpit.v8i3.5341

Żarski, M., Wójcik, B., & Miszczak, J. A. (2021). Krakn: Transfer Learning Framework and Dataset for Infrastructure Thin Crack Detection. SoftwareX, 16, 100893. https://doi.org/10.1016/J.SOFTX.2021.100893

Downloads

Published

2025-05-31

How to Cite

Pangestu, D. A., Aziz, O. Q., & Crysdian, C. (2025). Klasifikasi Penyakit pada Tanaman Berdasarkan Citra Daun Menggunakan Metode Convolutional Neural Network. JISKA (Jurnal Informatika Sunan Kalijaga), 10(2), 235–248. https://doi.org/10.14421/jiska.2025.10.2.235-248

Issue

Section

Articles