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Abstract 

Currently, the growth of the Android operating system on smartphone devices is popular. However, behind this 

popularity, the Android platform is also a potential target for cybercrimes against cybersecurity threats such as 

malware. Identifying this malware is critical to maintaining user security and privacy. Because the malware 

identification process is getting more complicated, it is necessary to use machine learning for malware 

classification. This study collects the static analysis features of safe and malicious applications. (malware). The 

dataset used in this study is a DREBIN malware dataset which is a publicly available malware dataset. The 

dataset consists of the CALL API features, system commands, manifest permissions, and Intents. The data is then 

processed using various supervised machine learning algorithms including Support Vector Machine (SVM), 

Naive Bayes, Decision Tree and K-Nearest Neighbors. We also concentrate on maximizing performance by 

evaluating various algorithms and adjusting some configurations to get the best combination of hyper-

parameters. The experimental results show that the SVM model classification gets the best results by achieving 

an accuracy of 96.94% and an AUC (Area Under Curve) value of 95%. 
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1. INTRODUCTION 

The development of information technology 

today has brought many advances in various fields, 

one of which is in mobile devices, namely 

smartphones. A smartphone basically provides 

applications and an operating system to facilitate its 

users. Some of the operating systems used include 

iOS, Blackberry OS, and Android. Of the several 

existing operating systems, Android is one of the 

most widely used operating systems. According to 

Google CEO, Erich Schmidt, around 1.4 million 

Androids are activated every day(cycles, 2021). 

As of mid-2020, the Android platform represents 

70.61% of the total mobile operating system market based 

on NetMarketShare, which makes it the most used mobile 

operating system (Stat, 2021). However, the popularity of 

Android does not always have a positive impact on its 

users. Even with various protection mechanisms such as 

Play Store Protection, there are still various reports of 

malware presence in the Play Store(Alzaylaee, Yerima 

& Sezer, 2020).. 

This widely used Android mobile operating 

systemcan become the target of crime. According to 

the McAfee Mobile Threat Report, there is a new 

type of malware called PhantomLance, LeifAccess 

or Shopper, which was only identified in May 2020 

and has been active globally, mainly in the United 

States and Brazil with a total of 943 and 286 attacks 

respectively. According to Pavel Shoshin, 

PhantomLance is a backdoor Trojan for Android on 

Google Play(Qiu et al., 2020). The statement shows 

that even companies like Google, which are often at the 

forefront of keeping the Android ecosystem free of 

malware, have failed to take action to prevent 

malware.(Ma et al., 2019). From the statement above, 

Android malware is getting more and more sophisticated 

to circumvent security and infiltrate the Google Play Store. 

This malware will most likely spread to Android devices. 

Due to the increasing sophistication of malware and 

difficult to detect, it is important to do malware detection. 

Many researchers are trying to mitigate cyberattacks on 

malware through various approaches(Odusami et al., 

2018). 

Various malware detection techniques were 

developed to counter this expansion. Among the most 

common detection systems is static analysis(Taheri et al., 

2020). Through an analytical approachstatic, malware is 

recognized as a signature extracted from an 

application. Usually, this signature comes from the 

payload. When the signature is recognized, it will be 

stored in the database and used to classify new 

malware cases based on that database.(McLaughlin 

et al., 2017). 

On the other hand dynamic analysis is a procedure 

in which malware instances are examined in real-time. 

When running in a virtual environment such as an 

emulator or sandbox, malicious program activity is 

observed. Anti-virus programtrying to find if actions 

like file replication, duplication, or even 

impersonation were performed. After the code is 

decompiled, comparisons are made with known 

malware code to determine if the application is 

malicious. The main drawback of this method is the 

inability to find viruses that use new procedures to 

carry out malicious activities and are inefficient in 

terms of time and resources(Wang, Zhao and Wang, 

2019). 

For this research, we have focused on static analysis 

for malware classification. Static analysis is a quick and 

easy method of identificationmalware without running 

the application or observing run-time behavior(Ma 

et al., 2019). This study proposes a machine learning 

algorithm to be used in malware detection by comparing 

several algorithms. Four algorithms will be compared, 

namely Support Vector Machine (SVM), Naive Bayes, 

Decision Tree, K-Nearest Neighbor (KNN). 

2. LITERATURE REVIEW 

For a few years, Machine Learning (ML) algorithms 

were tasked with developing intelligent systems by 

training machines to make decisions. With datasets 

asinput and classifier as a method, ML is able to 

identify new data that has similarities. There are 

many ML algorithms that can be used to build ML 

frameworks or models and each algorithm has its 

own advantages depending on the dataset and 

features used. 

(Wang, Zhao and Wang, 2019)in his research, 

comparing the ML classifier included in the Supervised 

group. Supervised Machine Learning is a search algorithm 

that utilizes external instances to generate general 

hypotheses, which are then used to predict eventsThe 

future ML algorithms used in this study include 

Decision Tables, Random Forests (RF), Naïve Bayes 

(NB), Support Vector Machines (SVM), JRip, and 

Decision Trees (J48) and use machine learning tools 

Waikato Environment for Knowledge Analysis 

(WEKA). The result is that SVM is an algorithm 

that has the best accuracy and precision. 

in 2018(Fan et al., 2018), conducted other research 

on malware detection. (McLaughlin et al., 2017) Fan built 

a malware detection framework which included six 

machine learning classifiers, SVM, Decision Tree (C4.5), 

MLP, NB, K-KN and Bagging predictor. To calculate the 

ML performance of the algorithm, Chen divides it into 

two categories: the first category contains permission 

features and sensitive API calls and the second category 

contains permission, sensitive features, API calls, 

sequences and dynamic behavior. In the first category the 

best performance was obtained by K-NN and MLP with 

average accuracy reaching above 91.00%. Whereas in the 

second category, SVM and K-NN obtained the highest 

accuracy with an average value of 93.80% and 93.80%. In 

terms of execution time all algorithms run under one 

minute, except (MLP) which with its multi-layer takes 

longer. In general, in this study, K-NN is the classifier 

with the best performance that requires small 

computational resources. 

In 2020, research was conducted by(Zhang et al., 

2020)malware detection based on machine learning using 
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dynamic analysis on android applications. In the end, 

created an application, to extractthe information 

contained in an android application. In this 

application several classification algorithms are 

trained to see the best performance in terms of 

accuracy and speed. In this application, it was found 

that the research obtained an accuracy value of 97% 

for detecting invisible malware from the data that 

had been prepared. 

In research conducted by(Feng et al., 2018), 

performs a dynamic analysis study which uses syscall-

capture to capture and analyze the behavior of system-call 

traces made by each application during its execution. In 

the end, an accuracy rate of 85% was obtained using the 

decision tree algorithm and an accuracy rate of 88% using 

the RF algorithm. 

In research conducted by(Lashkari et al., 2018), 

malware detection is carried out on smartphones that use 

the Android operating system. This research includes a 

discussion on how to develop a malware detection system 

that can detect various types of malware, how to detect 

malware before the installation process through several 

stages. The first step is to extract the strings from the 

android application and explore the android manifest.xml 

file. the second step is separating the string keywords from 

the android manifest.xml. The third stage is classifying 

malware and legitimate applications using keywords and 

strings as input features. The final stage is identifying 

dangerous applications and safe applications. 

Overall, what differentiates this research from 

previous studies is that we used a static analysis approach. 

This approach was chosen because the detection process is 

fast and lighter on memory considering the 

implementation environment on mobile. 

3. RESEARCH METHODS 

This research method is divided into several stages 

as depicted in Figure 1 which include research data 

collection, data processing, classification testing, and 

algorithm comparisons. The following is an overview of 

each of these stages. 

The first stage is data collection. We collect datasets 

from the malware DREBIN project(Arp et al., 2014). 

The data contains 215 feature attributes extracted from 

3799 applications (1260 malware applications and 2539 

benign applications). The feature attributes in the dataset 

consist of static analysis attributes in the form of signatures 

from the application. The dataset contains static attributes 

like manifest permissions, command signatures, intents. 

Besides that, there is also an API call attribute which is the 

result of dynamic analysis. This dataset will be used as 

training data and test data for machine learning algorithms. 

The second stage is data processing. The existing 

dataset is then divided into training data and test data. The 

proportion of training data and test data is 80% for training 

data or 3039 data and 20% for validation data or as many 

as 760 data. One column represents one feature and its 

frequency, while one row represents one android 

application, and the last column is class type (1 for 

malware applications and 0 for tame applications). The 

data is divided by means of cross validation, in which the 

data is divided equally for training and testing without 

overlapping each other. In this study we used 5-fold cross 

validation. 

The third stage is classification testing. In this study, 

the data will be used by the SVM, NB, Decision Tree, and 

K-NN algorithms. Each algorithm will use training data in 

the same proportion, namely 80% for training data and 

20% for test data. 

 
Figure 1. Research flow 

 
The following is an overview of the process at this stage: 
1. The training data was obtained from random separation 

of the dataset which took 80% of the entire dataset. 
2. Random separation test data obtained from a dataset 

taken 20% of the entire dataset. 
3. Algorithm training is the process of training a 

classification algorithm with training data. 
4. Classification at this stage is tested between training 

data and test data, by calculating the classification 
accuracy. The result is the level of accuracy in 
classifying applications. 

The next step is the comparison of the algorithms. 

The result of the third stage is accuracy in predicting 

applications, including malware or not. The level of 

accuracy of the SVM, NB, Decision Tree, and K-NN 

algorithms will be compared. From this comparison, it is 

obtained that the algorithm is considered more effective in 

classifying applications, whether it is malware or not. 

 

4. RESULTS AND DISCUSSION 

Once the data is collected, we use Google 

Colab to process it. We used a test environment with 

an i3-2328M processor with 10GB of RAM: At the 

data preprocessing stage using the SMOTE 

technique, we obtained the same number of sample 

classes, namely 2539 in each class. Stratified 5-fold 
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cross-validation divides the data equally with 80% 

of the training data, and the remainder goes to 

validation. The techniques used for training and 

validation are SVM, K-NN, Decision Tree and NB. 

Table 1 describes the average training accuracy and 

latency results. 

 
Table 1. Test results 

Algorithm accuracy Latency 

SVM 0.969471 4,497 

Naive Bayes 0.738667 1,247 
DecisionTree 0.923684 2,754 

K-NN 0.928667 1,549 

 

From the accuracy table above, it is known that 

the SVM algorithm has an average accuracy of 

96.94% which is also the highest value compared to 

the other three algorithms. In addition, the KNN 

algorithm also has an average accuracy that is close 

to the average accuracy of the SVM algorithm. 

SVM shows the best malware detection results. 

SVM shows the best results here presumably 

because the dataset is not too big, and the data is 

clean from noise. SVM tends to work better on data 

that is not too large and free of noise. Another factor 

is the feature size of the dataset which is quite large 

with 215 features because SVM is more effective for 

datasets with large dimensions. 

AlgorithmNB does not produce high accuracy 

scores because it tends to work more effectively 

with less training data. This algorithm also has the 

shortest latency time because the training data set is 

only stored in memory and reused during prediction. 

This results in short training times but longer testing 

times. The same way of working also applies to the 

K-NN algorithm. Therefore, this algorithm has a 

relatively short training time. The K-NN algorithm 

shows quite good results, this is due to the 

distribution of non-linear data because this algorithm 

is known for classifying non-linear data. 

The results of the next test are shown in Figure 

2 which is the ROC (Receiver Operating 

Characteristics) curve of the SVM model. The ROC 

curve is used to assess the performance of a 

classification problem. Area Under Curve (AUC) is 

the size of the area under the ROC curve, the wider 

this area indicates the better the proposed 

classification model. ROC is a graphical 

representation of the relationship between sensitivity 

and specificity. This value indicates how well the 

model's ability to separate classes. Figure 2 depicts a 

fairly wide AUC of around 95%. This value 

indicates that the resulting model is suitable for 

input categorization. In addition, Figure 2 also 

shows that the AUC area in the training and 

validation dataset is relatively stable. These results 

indicate that the proposed model is fit. 

Figure 2. ROC curve on the SVM model 
 

5. CONCLUSIONS AND 

RECOMMENDATIONS 

The popularity of the Android operating system 

has made it a target for many crimes, such as 

malware. Various malware detection engines are 

emerging with various static or dynamic detection 

methods and machine learning algorithms. In this 

study, malware detection uses static analysis 

methods and machine learning algorithms. The 

results shown prove that our model provides a high 

accuracy of 96.94% using the SVM algorithm. The 

results of the ROC curve test also show that the 

model has an AUC area of around 95%. For further 

research development, deep learning algorithms can 

be investigated to improve malware detection 

capabilities on the Android platform. 
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