
CyberSecurity and Digital Forensics e-ISSN: 2615-8442
Vol. 5, No. 1, May 2022, p.1-5

1

STATISTICAL ANALYSIS OF ANDROID MALWARE DETECTION USING

SUPERVISED MACHINE LEARNING ALGORITHM

Raden Budiarto Hadiprakoso1, Wahyu Rendra Aditya 2, Febriora Nevia Pramitha 3

1,2,3 Politeknik Siber dan Sandi Negara

Email: 1raden.budiarto@poltekssn.ac.id, 2wahyu.rendra@poltekssn.ac.id, 3febriora.nevia@poltekssn.ac.id

Abstract

Currently, the growth of the Android operating system on smartphone devices is popular. However, behind this

popularity, the Android platform is also a potential target for cybercrimes against cybersecurity threats such as

malware. Identifying this malware is critical to maintaining user security and privacy. Because the malware

identification process is getting more complicated, it is necessary to use machine learning for malware

classification. This study collects the static analysis features of safe and malicious applications. (malware). The

dataset used in this study is a DREBIN malware dataset which is a publicly available malware dataset. The

dataset consists of the CALL API features, system commands, manifest permissions, and Intents. The data is then

processed using various supervised machine learning algorithms including Support Vector Machine (SVM),

Naive Bayes, Decision Tree and K-Nearest Neighbors. We also concentrate on maximizing performance by

evaluating various algorithms and adjusting some configurations to get the best combination of hyper-

parameters. The experimental results show that the SVM model classification gets the best results by achieving

an accuracy of 96.94% and an AUC (Area Under Curve) value of 95%.

Keywords: android, malware, machine learning, malware detection, static analysis

2 CyberSecurity and Digital Forensics, Vol. 5, No. 1, May 2022, p.2-5

1. INTRODUCTION

The development of information technology

today has brought many advances in various fields,

one of which is in mobile devices, namely

smartphones. A smartphone basically provides

applications and an operating system to facilitate its

users. Some of the operating systems used include

iOS, Blackberry OS, and Android. Of the several

existing operating systems, Android is one of the

most widely used operating systems. According to

Google CEO, Erich Schmidt, around 1.4 million

Androids are activated every day(cycles, 2021).

As of mid-2020, the Android platform represents

70.61% of the total mobile operating system market based

on NetMarketShare, which makes it the most used mobile

operating system (Stat, 2021). However, the popularity of

Android does not always have a positive impact on its

users. Even with various protection mechanisms such as

Play Store Protection, there are still various reports of

malware presence in the Play Store(Alzaylaee, Yerima

& Sezer, 2020)..

This widely used Android mobile operating

systemcan become the target of crime. According to

the McAfee Mobile Threat Report, there is a new

type of malware called PhantomLance, LeifAccess

or Shopper, which was only identified in May 2020

and has been active globally, mainly in the United

States and Brazil with a total of 943 and 286 attacks

respectively. According to Pavel Shoshin,

PhantomLance is a backdoor Trojan for Android on

Google Play(Qiu et al., 2020). The statement shows

that even companies like Google, which are often at the

forefront of keeping the Android ecosystem free of

malware, have failed to take action to prevent

malware.(Ma et al., 2019). From the statement above,

Android malware is getting more and more sophisticated

to circumvent security and infiltrate the Google Play Store.

This malware will most likely spread to Android devices.

Due to the increasing sophistication of malware and

difficult to detect, it is important to do malware detection.

Many researchers are trying to mitigate cyberattacks on

malware through various approaches(Odusami et al.,

2018).

Various malware detection techniques were

developed to counter this expansion. Among the most

common detection systems is static analysis(Taheri et al.,

2020). Through an analytical approachstatic, malware is

recognized as a signature extracted from an

application. Usually, this signature comes from the

payload. When the signature is recognized, it will be

stored in the database and used to classify new

malware cases based on that database.(McLaughlin

et al., 2017).

On the other hand dynamic analysis is a procedure

in which malware instances are examined in real-time.

When running in a virtual environment such as an

emulator or sandbox, malicious program activity is

observed. Anti-virus programtrying to find if actions

like file replication, duplication, or even

impersonation were performed. After the code is

decompiled, comparisons are made with known

malware code to determine if the application is

malicious. The main drawback of this method is the

inability to find viruses that use new procedures to

carry out malicious activities and are inefficient in

terms of time and resources(Wang, Zhao and Wang,

2019).

For this research, we have focused on static analysis

for malware classification. Static analysis is a quick and

easy method of identificationmalware without running

the application or observing run-time behavior(Ma

et al., 2019). This study proposes a machine learning

algorithm to be used in malware detection by comparing

several algorithms. Four algorithms will be compared,

namely Support Vector Machine (SVM), Naive Bayes,

Decision Tree, K-Nearest Neighbor (KNN).

2. LITERATURE REVIEW

For a few years, Machine Learning (ML) algorithms

were tasked with developing intelligent systems by

training machines to make decisions. With datasets

asinput and classifier as a method, ML is able to

identify new data that has similarities. There are

many ML algorithms that can be used to build ML

frameworks or models and each algorithm has its

own advantages depending on the dataset and

features used.

(Wang, Zhao and Wang, 2019)in his research,

comparing the ML classifier included in the Supervised

group. Supervised Machine Learning is a search algorithm

that utilizes external instances to generate general

hypotheses, which are then used to predict eventsThe

future ML algorithms used in this study include

Decision Tables, Random Forests (RF), Naïve Bayes

(NB), Support Vector Machines (SVM), JRip, and

Decision Trees (J48) and use machine learning tools

Waikato Environment for Knowledge Analysis

(WEKA). The result is that SVM is an algorithm

that has the best accuracy and precision.

in 2018(Fan et al., 2018), conducted other research

on malware detection. (McLaughlin et al., 2017) Fan built

a malware detection framework which included six

machine learning classifiers, SVM, Decision Tree (C4.5),

MLP, NB, K-KN and Bagging predictor. To calculate the

ML performance of the algorithm, Chen divides it into

two categories: the first category contains permission

features and sensitive API calls and the second category

contains permission, sensitive features, API calls,

sequences and dynamic behavior. In the first category the

best performance was obtained by K-NN and MLP with

average accuracy reaching above 91.00%. Whereas in the

second category, SVM and K-NN obtained the highest

accuracy with an average value of 93.80% and 93.80%. In

terms of execution time all algorithms run under one

minute, except (MLP) which with its multi-layer takes

longer. In general, in this study, K-NN is the classifier

with the best performance that requires small

computational resources.

In 2020, research was conducted by(Zhang et al.,

2020)malware detection based on machine learning using

RB Hadiprakoso, et al, Static Analysis for Android Malware Detection …3

dynamic analysis on android applications. In the end,

created an application, to extractthe information

contained in an android application. In this

application several classification algorithms are

trained to see the best performance in terms of

accuracy and speed. In this application, it was found

that the research obtained an accuracy value of 97%

for detecting invisible malware from the data that

had been prepared.

In research conducted by(Feng et al., 2018),

performs a dynamic analysis study which uses syscall-

capture to capture and analyze the behavior of system-call

traces made by each application during its execution. In

the end, an accuracy rate of 85% was obtained using the

decision tree algorithm and an accuracy rate of 88% using

the RF algorithm.

In research conducted by(Lashkari et al., 2018),

malware detection is carried out on smartphones that use

the Android operating system. This research includes a

discussion on how to develop a malware detection system

that can detect various types of malware, how to detect

malware before the installation process through several

stages. The first step is to extract the strings from the

android application and explore the android manifest.xml

file. the second step is separating the string keywords from

the android manifest.xml. The third stage is classifying

malware and legitimate applications using keywords and

strings as input features. The final stage is identifying

dangerous applications and safe applications.

Overall, what differentiates this research from

previous studies is that we used a static analysis approach.

This approach was chosen because the detection process is

fast and lighter on memory considering the

implementation environment on mobile.

3. RESEARCH METHODS

This research method is divided into several stages

as depicted in Figure 1 which include research data

collection, data processing, classification testing, and

algorithm comparisons. The following is an overview of

each of these stages.

The first stage is data collection. We collect datasets

from the malware DREBIN project(Arp et al., 2014).

The data contains 215 feature attributes extracted from

3799 applications (1260 malware applications and 2539

benign applications). The feature attributes in the dataset

consist of static analysis attributes in the form of signatures

from the application. The dataset contains static attributes

like manifest permissions, command signatures, intents.

Besides that, there is also an API call attribute which is the

result of dynamic analysis. This dataset will be used as

training data and test data for machine learning algorithms.

The second stage is data processing. The existing

dataset is then divided into training data and test data. The

proportion of training data and test data is 80% for training

data or 3039 data and 20% for validation data or as many

as 760 data. One column represents one feature and its

frequency, while one row represents one android

application, and the last column is class type (1 for

malware applications and 0 for tame applications). The

data is divided by means of cross validation, in which the

data is divided equally for training and testing without

overlapping each other. In this study we used 5-fold cross

validation.

The third stage is classification testing. In this study,

the data will be used by the SVM, NB, Decision Tree, and

K-NN algorithms. Each algorithm will use training data in

the same proportion, namely 80% for training data and

20% for test data.

Figure 1. Research flow

The following is an overview of the process at this stage:
1. The training data was obtained from random separation

of the dataset which took 80% of the entire dataset.
2. Random separation test data obtained from a dataset

taken 20% of the entire dataset.
3. Algorithm training is the process of training a

classification algorithm with training data.
4. Classification at this stage is tested between training

data and test data, by calculating the classification
accuracy. The result is the level of accuracy in
classifying applications.

The next step is the comparison of the algorithms.

The result of the third stage is accuracy in predicting

applications, including malware or not. The level of

accuracy of the SVM, NB, Decision Tree, and K-NN

algorithms will be compared. From this comparison, it is

obtained that the algorithm is considered more effective in

classifying applications, whether it is malware or not.

4. RESULTS AND DISCUSSION

Once the data is collected, we use Google

Colab to process it. We used a test environment with

an i3-2328M processor with 10GB of RAM: At the

data preprocessing stage using the SMOTE

technique, we obtained the same number of sample

classes, namely 2539 in each class. Stratified 5-fold

4 CyberSecurity and Digital Forensics, Vol. 5, No. 1, May 2022, p.4-5

cross-validation divides the data equally with 80%

of the training data, and the remainder goes to

validation. The techniques used for training and

validation are SVM, K-NN, Decision Tree and NB.

Table 1 describes the average training accuracy and

latency results.

Table 1. Test results

Algorithm accuracy Latency

SVM 0.969471 4,497

Naive Bayes 0.738667 1,247
DecisionTree 0.923684 2,754

K-NN 0.928667 1,549

From the accuracy table above, it is known that

the SVM algorithm has an average accuracy of

96.94% which is also the highest value compared to

the other three algorithms. In addition, the KNN

algorithm also has an average accuracy that is close

to the average accuracy of the SVM algorithm.

SVM shows the best malware detection results.

SVM shows the best results here presumably

because the dataset is not too big, and the data is

clean from noise. SVM tends to work better on data

that is not too large and free of noise. Another factor

is the feature size of the dataset which is quite large

with 215 features because SVM is more effective for

datasets with large dimensions.

AlgorithmNB does not produce high accuracy

scores because it tends to work more effectively

with less training data. This algorithm also has the

shortest latency time because the training data set is

only stored in memory and reused during prediction.

This results in short training times but longer testing

times. The same way of working also applies to the

K-NN algorithm. Therefore, this algorithm has a

relatively short training time. The K-NN algorithm

shows quite good results, this is due to the

distribution of non-linear data because this algorithm

is known for classifying non-linear data.

The results of the next test are shown in Figure

2 which is the ROC (Receiver Operating

Characteristics) curve of the SVM model. The ROC

curve is used to assess the performance of a

classification problem. Area Under Curve (AUC) is

the size of the area under the ROC curve, the wider

this area indicates the better the proposed

classification model. ROC is a graphical

representation of the relationship between sensitivity

and specificity. This value indicates how well the

model's ability to separate classes. Figure 2 depicts a

fairly wide AUC of around 95%. This value

indicates that the resulting model is suitable for

input categorization. In addition, Figure 2 also

shows that the AUC area in the training and

validation dataset is relatively stable. These results

indicate that the proposed model is fit.

Figure 2. ROC curve on the SVM model

5. CONCLUSIONS AND

RECOMMENDATIONS

The popularity of the Android operating system

has made it a target for many crimes, such as

malware. Various malware detection engines are

emerging with various static or dynamic detection

methods and machine learning algorithms. In this

study, malware detection uses static analysis

methods and machine learning algorithms. The

results shown prove that our model provides a high

accuracy of 96.94% using the SVM algorithm. The

results of the ROC curve test also show that the

model has an AUC area of around 95%. For further

research development, deep learning algorithms can

be investigated to improve malware detection

capabilities on the Android platform.

RB Hadiprakoso, et al, Static Analysis for Android Malware Detection …5

BIBLIOGRAPHY

Alzaylaee, M.K., Yerima, S.Y. and Sezer, S., 2020.

DL-Droid: Deep learning based android

malware detection using real devices.

Computers & Security, 89, p.101663.

Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H.

and Rieck, K., 2014. DREBIN: Effective and

Explainable Detection of Android Malware in

Your Pocket. Symposium on Network and

Distributed System Security (NDSS). .

https://doi.org/10.14722/ndss.2014.23247.

Cycles, D., 2021. Topic: Android. [online] Statista.

Available at:

<https://www.statista.com/topics/876/android

/> [Accessed 11 Oct. 2021].

Fan, M., Liu, J., Luo, X., Chen, K., Tian, Z., Zheng,

Q. and Liu, T., 2018. Android malware

familial classification and representative

sample selection via frequent subgraph

analysis. IEEE Transactions on Information

Forensics and Security, 13(8), pp.1890–1905.

Feng, P., Ma, J., Sun, C., Xu, X. and Ma, Y., 2018.

A novel dynamic Android malware detection

system with ensemble learning. IEEE Access,

6, pp.30996–31011.

Lashkari, A.H., Kadir, A.F.A., Taheri, L. and

Ghorbani, A.A., 2018. Toward developing a

systematic approach to generate benchmark

android malware datasets and classification.

In: 2018 International Carnahan Conference

on Security Technology (ICCST). IEEE.pp.1–

7.

Ma, Z., Ge, H., Liu, Y., Zhao, M. and Ma, J., 2019.

A combination method for android malware

detection based on control flow graphs and

machine learning algorithms. IEEE access, 7,

pp.21235–21245.

McLaughlin, N., Martinez del Rincon, J., Kang, B.,

Yerima, S., Miller, P., Sezer, S., Safaei, Y.,

Trickel, E., Zhao, Z. and Doupé, A., 2017.

Deep android malware detection. In:

Proceedings of the seventh ACM on

conference on data and application security

and privacy. pp.301–308.

Odusami, M., Abayomi-Alli, O., Misra, S., Shobayo,

O., Damasevicius, R. and Maskeliunas, R.,

2018. Android malware detection: A survey.

In: International conference on applied

informatics. Springer.pp.255–266.

Qiu, J., Zhang, J., Luo, W., Pan, L., Nepal, S. and

Xiang, Y., 2020. A survey of Android

malware detection with deep neural models.

ACM Computing Surveys (CSUR), 53(6),

pp.1–36.

Taheri, R., Ghahramani, M., Javidan, R., Shojafar,

M., Pooranian, Z. and Conti, M., 2020.

Similarity-based Android malware detection

using Hamming distance of static binary

features. Future Generation Computer

Systems, 105, pp.230–247.

Wang, W., Zhao, M. and Wang, J., 2019. Effective

android malware detection with a hybrid

model based on deep autoencoder and

convolutional neural network. Journal of

Ambient Intelligence and Humanized

Computing, 10(8), pp.3035–3043.

Zhang, X., Zhang, Y., Zhong, M., Ding, D., Cao, Y.,

Zhang, Y., Zhang, M. and Yang, M., 2020.

Enhancing state-of-the-art classifiers with

API semantics to detect evolved android

malware. In: Proceedings of the 2020 ACM

SIGSAC Conference on Computer and

Communications Security. pp.757–770.

.

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. RESEARCH METHODS
	4. RESULTS AND DISCUSSION
	5. CONCLUSIONS AND RECOMMENDATIONS
	BIBLIOGRAPHY

