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Abstract. The properties of pasta which is located at the bottom of inner crust from neutron star has been studied by using compressible 

liquid drop model. Compressible liquid drop model is a modified liquid drop model as a density function. Liquid drop model based on 

assumption that the magnitude of nucleus bonding energy is contribution of surface, Coulomb, volume, symmetry, and proton-neutron 

pair effect. Pasta of neutron star behaves like liquid crystals (mesomhorpic phase). The top layer of pasta filled by free neutron gas, while 

in the lowest layer of the pasta is filled by proton-neutron gas. The properties of pasta are observed at temperatures close to zero Kelvin 

with the assumption that neutron star is on ground state and non accretion. The study of pasta emphasizes on symmetry energy’s 

influence. Symmetry energy reduces the magnitude of bonding energy of nucleon in the nucleus and it causes nucleon to be more easily 

released from nucleus. After that, symmetry energy influence the properties of pasta, such as the shape of nucleus that is non spherical 

(some like plates, rods, and bubbles), the fluctuative values of Wigner-Seitz cell, and uneven distribution of protons and neutrons in the 

pasta region of neutron star. 
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INTRODUCTION 

The existence of neutron star was first discovered by 

thermal radiation from the surface of an isolated 

neutron star that was cooling down captured by a 

detector installed on a rocket when it exited from 

Earth's atmosphere. In 1967, astronomer Jocelyn Bell 

discovered well radio signals through radio wave 

telescopes. The object named pulsar (pulsating radio 

sources). A year after publication of Jocelyn, Gold 

proposed pulsars are rotating neutron stars at very high 

densities which causes the gravitational field is too 

strong (Yasrina, 2011). 

 Called neutron stars because it contains of 

abundance neutrons, mainly in the core of star. The 

main difference between neutrons in the nucleus and 

neutrons in neutron stars is atomic nucleus is only 

bound by strong nuclear forces, whereas in neutron 

stars, nuclear forces are also bound by gravitational 

forces. The gravitational binding energy of a neutron 

star is about 10% of neutron star’s mass, while the 

bonding energy of a nucleus by Fe
56

 is 9 MeV/ 

nucleon, equivalent to 1% of the mass of Fe
56

 

(Glendenning, 2000). 

 Neutron star has a mass 𝑀 ∼ (1−2) M⊙ and has 

radius of 𝑅 ≈ (10−14) km. The maximum mass that can 

be possessed by a neutron star is 𝑀 ∼ 1.5𝑀⊙ and its 

radius 𝑅 ∼ 3 km. Basically size of a neutron star 

depends on equilibrium of gravitational force with the 

pressure of degenerated neutron. The density of neutron 

stars is 𝜌 ≃ (2−3) 𝜌𝑜, where 𝜌𝑜 = 2,8 ×10
14

 gr cm
−3

 is 

normal density of nucleus. Its gravitational energy is 

𝐸grav ~ 𝐺𝑀2
/𝑅 ~ 5×10

53 
erg ~ 0,2 𝑀𝑐2

, and  the gravity 

on its surface is  𝑔 ~ 𝐺𝑀𝑅2
 ~ 2×10

14 
cm s

−2
 (2×10

11 

times than Earth) (Haensel et al.,  2007). 

The structure of neutron star can be subdivided into 

the atmosphere, ocean, outer crust, inner crust and 

mantle. The outer crust consists of plasma ions and 

ionized electrons (Potekhin, 2011). A very thin surface 

layer (up to few meters in a hot star), contains a non-

degenerate electron gas. In deeper layers the electrons a 

strongly degenerate, almost ideal gas, which becomes 

ultrarelativistic 𝜌 ≫ 10
6
 gr cm

−3
 (Haensel et al., 2007). 

The pressure is mainly provided by electrons. The 

matter of inner crust consists of electrons, free neutrons 

n, and neutron-rich atomic nuclei. The fraction of free 

neutrons increases with growing mass density. The 

pressure of inner crust is produced by degenerated 

neutrons (Potekhin, 2011). 

Pasta of neutron stars is a region that has properties 

such as liquid crystals, it’s located in transition region 

of inner crust to outer core and called "mantle". In 

mantle region, special properties are found in the form 

of non-spherical atomic nuclei, such as rods, plates, 

tubes and bubbles. In addition, at pasta are found ocean 

of free neutrons gas in the inner crust region, with form 

of nuclei like rods and plates. Also found areas 

containing oceans of protons and neutrons when 

nucleus shape like a tube and bubble, more precisely 

it’s found in the region closed to outer core.  

For knowing the structure and state of neutron stars 

can’t be execute directly. The observations to neutron 

stars are only based on emitted spectrum with the 

results in the form of luminosity and spectrum energy 

(frequency and wavelength) to determine the mass, 

radius, and surface temperature of neutron stars in 
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general. According to observational data, it is known 

that neutron star has a mass interval 1.2M⊙ to 2M⊙, 

and radius interval is 10 km to 14 km. These results 

obtained in accordance with computational calculations 

for theoretical models. Therefore, theoretical models 

built to describe the structure and state of neutron stars 

can be used to study the state and structure of neutron 

stars (Haensel et al., 2007). 

The existence of neutron star was first discovered 

by thermal radiation from the surface of an isolated 

neutron star that was cooling down captured by a 

detector installed on a rocket when it exited from 

Earth's atmosphere. In 1967, astronomer Jocelyn Bell 

discovered well radio signals through radio wave 

telescopes. The object named pulsar (pulsating radio 

sources). A year after publication of Jocelyn, Gold 

proposed pulsars are rotating neutron stars at very high 

densities which causes the gravitational field is too 

strong (Yasrina, 2011). 

Called neutron stars because it contains of 

abundance neutrons, mainly in the core of star. The 

main difference between neutrons in the nucleus and 

neutrons in neutron stars is atomic nucleus is only 

bound by strong nuclear forces, whereas in neutron 

stars, nuclear forces are also bound by gravitational 

forces. The gravitational binding energy of a neutron 

star is about 10% of neutron star’s mass, while the 

bonding energy of a nucleus by Fe
56

 is 9 MeV / 

nucleon, equivalent to 1% of the mass of Fe
56

 

(Glendenning, 2000). 

Neutron star has a mass 𝑀 ∼ (1−2) M⊙ and has 

radius of 𝑅 ≈ (10−14) km. The maximum mass that can 

be possessed by a neutron star is 𝑀 ∼ 1.5𝑀⊙ and its 

radius 𝑅 ∼ 3 km. Basically size of a neutron star 

depends on equilibrium of gravitational force with the 

pressure of degenerated neutron. The density of neutron 

stars is 𝜌 ≃ (2−3) 𝜌𝑜, where 𝜌𝑜 = 2,8 ×10
14

 gr cm
−3

 is 

normal density of nucleus. Its gravitational energy is 

𝐸grav ~ 𝐺𝑀2
/𝑅 ~ 5×10

53 
erg ~ 0,2 𝑀𝑐2

, and  the gravity 

on its surface is  𝑔 ~ 𝐺𝑀𝑅2
 ~ 2×10

14 
cm s

−2
 (2×10

11 

times than Earth) (Haensel et al., 2007). 

The structure of neutron star can be subdivided into 

the atmosphere, ocean, outer crust, inner crust and 

mantle. The outer crust consists of plasma ions and 

ionized electrons (Potekhin, 2011). A very thin surface 

layer (up to few meters in a hot star), contains a non-

degenerate electron gas. In deeper layers the electrons a 

strongly degenerate, almost ideal gas, which becomes 

ultrarelativistic 𝜌 ≫ 10
6
 gr cm

−3
 (Haensel et al., 2007). 

The pressure is mainly provided by electrons. The 

matter of inner crust consists of electrons, free neutrons 

n, and neutron-rich atomic nuclei. The fraction of free 

neutrons increases with growing mass density. The 

pressure of inner crust is produced by degenerated 

neutrons (Potekhin, 2011). 

Pasta of neutron stars is a region that has properties 

such as liquid crystals, it’s located in transition region 

of inner crust to outer core and called "mantle". In 

mantle region, special properties are found in the form 

of non-spherical atomic nuclei, such as rods, plates, 

tubes and bubbles. In addition, at pasta are found ocean 

of free neutrons gas in the inner crust region, with form 

of nuclei like rods and plates. Also found areas 

containing oceans of protons and neutrons when 

nucleus shape like a tube and bubble, more precisely 

it’s found in the region closed to outer core.  

For knowing the structure and state of neutron stars 

can’t be execute directly. The observations to neutron 

stars are only based on emitted spectrum with the 

results in the form of luminosity and spectrum energy 

(frequency and wavelength) to determine the mass, 

radius, and surface temperature of neutron stars in 

general. According to observational data, it is known 

that neutron star has a mass interval 1.2M⊙ to 2M⊙, 

and radius interval is 10 km to 14 km. These results 

obtained in accordance with computational calculations 

for theoretical models. Therefore, theoretical models 

built to describe the structure and state of neutron stars 

can be used to study the state and structure of neutron 

stars (Haensel et al., 2007). 

Compressible Liquid Drop Model 

 

Liquid Drop Model 

One of models that explains the binding energy is 

liquid drop model. This model was developed by Neils 

Bohr with the assumption that the properties of atomic 

nucleus are similar to properties in liquid drop. These 

characteristics include (Meyerhof, 1967 ; Arya, 1966) : 

a. Its density is constant for all region and does not 

depend on its size. The size is proportional to the 

number  of particles or molecules in the liquid. 

b. The binding energy is proportional to the mass or 

number of droplet’s former.  

c.  It is homogeneous and cannot be compressed. 

d.  Evaporation of liquid drops is analogous to the 

nuclei decay.  
 By analogizing the nucleus as a liquid drop, so it 

can be written a semi-empirical mass formula for each 

atom which has mass . The characteristic of 

force that arises from nucleons in the nucleus is short-

range and saturation, it is similar to force that apparent 

from molecules of a liquid. That analogy is the most 

important prediction in formulating the formula for 

nucleus mass. First step to construct the mass formula 

for nucleus is write down the truly nuclei mass, then 

add corrections that may exist. These corrections 

include volume, surface, Coulomb, symmetry and odd-

even effects and other possible effects. The final result 

is known as Weizsäcker's semi-empirical mass formula. 

It will be explained about those corrections. 

 

a. Volume Effect 

Based on liquid drop model, the density of each 

nucleon is same for all region, so binding energy is 

proportional to the number of nucleons ( ). Each 

nucleon is assumed give the same magnitude to bond 

energy, so the binding energy is , where , is 
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volume constant whose value can be obtained from 

experiment. Thus, bonding energy is equal to volume 

energy of nucleus, that is 

            (1) 

 However, because the nucleus is discussed in liquid 

drop model, there are other effects which causes the 

magnitude of binding energy such as surface tension 

and Coulomb force. These effects cause the binding 

energy in equation (1) should be corrected. 

b. Surface Effect 

If nuclei is analogized like liquid drop model, there 

should be surface tension that occurs in liquid drop. 

Nucleons that so far in nuclei are pulled from many 

sides by its nearby nucleons (nucleon in the nucleus 

and on the surface), while the nucleons on the surface 

are only attracted from one side (pulled by nucleon in 

inner nucleus). This causes the binding energy values 

on the surface to be smaller. This effect has a bigger 

effect  for nucleus which has small  (lighter nuclei) 

because the distribution/fraction of larger nucleons on 

the surface compared to the nucleus which has large . 

Because of this correction, the binding energy in 

equation (1) must be reduced by the surface energy to 

be  

 −         (2)

  

c. Coulomb Effect 
A decrease of binding energy per nucleon in a heavy 

nuclei (large ) can be explained by the existence of 

Coulomb effect. According to Coulomb's law, protons 

in the nucleus will repeal each other, thereby reducing 

binding energy or in other words increasing the mass of 

nucleus. Because the Coulomb force is long-range, 

each proton affects other proton, not only proton that 

are near it. Thus, the repulsion force will be stronger by 

increasing the value of , with increasing of value . 

This Coulomb repulsive force causes the average 

binding energy per nucleon decrease according to 

increase in . 

 Therefore the binding energy in equation (2) must 

be reduced by Coulomb energy. Thus, binding energy 

can be written as 

 −  -          (3) 

d. Symmetry Effect (Nucleon Pair) 

This effect depends on number of proton and neutron in 

nucleus. Neutron and proton are fermions. Based on 

Pauli Principle, identical fermions cannot be in the 

same quantum state. Two same nucleons (proton or 

neutron) can’t occupy a same quantum state. In 

contrast, proton-neutron can occupy the same quantum 

state. As the result, proton-neutron pair system has a 

minimum energy lower than the minimum energy of 

proton -proton or neutron-neutron system. Lower 

energy means that bond is stronger, the binding energy 

is greater. A nuclei that consists of  number of proton 

equal to number of neutron will has a lower minimum 

energy, which means the binding energy is higher, the 

bond is more stable, compared to the nucleus with the 

number of proton are unbalanced  with number of 

neutron. 

Thus, the correction for this effect is 

          (4) 

This correction gives an effect on binding energy, 

so binding energy in equation (3) must be reduced by 

the energy  and becomes 

− -                 (5) 

e. Even-Odd Effects 

Another important factor that can influence the binding 

energy of nuclei is the number of proton and neutron 

whether odd or even. The most stable nucleus is even - 

even type that has even number of proton and neutron. 

While the most unstable nuclei is the odd-odd type, that 

is both proton and neutron are odd number, which 

means that between proton and neutron will have no 

pair. The stability of odd-even and even-odd type is 

almost identical and is in even-even and odd-odd type 

stability levels. This tendency can be shown by 

classifying stable nuclei. 

 By observing these odd-even effects, binding 

energy needs to be corrected by adding an odd-even 

pair number δ (A, Z) to proton and neutron. This  

correction is defined by: 

                          (6) 

So the equation of binding energy after subtracting 

δ term becomes 

B =  −  -           (7)  

Compressible Liquid Drop Model 
The developed model from Weizsäcker-Bethe mass 

formula by adding coefficients of volume, surface and 

symmetry effects as a density functions are known as 

compressible liquid drop model. The first model for 

neutron star crust based on Weizsäcker semi-empirical 

mass formula, but the formula cannot be used for 

cluster with very large neutrons in the crust of neutron 

stars, with 𝑍/𝐴 varying from 0.3 to 0.1 (Sulistyani, 

2015). 

 In addition, the presence of neutron fluid influences 

nuclei cluster in the inner crust. First, neutron liquid 

reduces the surface energy of nuclei cluster. Second, 

neutron fluid give pressure on nuclei cluster. A major 

breakthrough was reached by Baym, Bethe and Pethick 

(BBP) who applied a compressible liquid-drop model, 

which included the results of microscopic many-body 

calculations, to describe consistently both the nucleons 

in the clusters and the “free” neutrons. BBP illustrates 

that the energy contribution to liquid drop equation 

depends not only on 𝐴 and 𝑍, but on a few additional 



64  

 

 2: 61-72, 2019 

parameters, such as, for instance, the size of the cluster 

and the density of the neutrons and protons inside it. 

Because the nucleus is composed of nucleons, 

interactions between nucleons can affect on nuclei 

density. One effect that is easily observed is the 

influence of surface tension. The interaction between 

nucleons on surface is different from nucleons in the 

inner (middle) core. Therefore, a review of surface 

effects is important for nucleon density. When the 

nucleon density increases, the pressure  will increase. 

It will affect the equilibrium of density from 

compressed liquid nucleon. To emphasize this effect, 

compressible liquid drop model which contains Semi-

Empirical Mass Formula that depends on nuclei density 

is used as the barion density and excess neutron on the 

inside of nucleus. 

Matter at densities below neutron drip  is not 

only relevant for neutron star crusts but also for white 

dwarfs. Following the classical paper of Baym, Pethick 

and Sutherland, the total energy density in a given layer 

can be written as (Haensel et al., 2007). 

         (8) 

where  is the number density of nuclei,  is 

the energy of a nucleus with Z protons and A−Z 

neutrons,    is the electron kinetic energy density and 

 is the lattice energy density, which accounts for the 

electron-electron, electron-ion and ion-ion Coulomb 

interactions. 

 The total energy of cluster needs to be renewed for 

inner crust of neutron star, because of contribution 

from neutron gas. Then equation (8) in liquid drop 

model, the total energy density can be written by 

adding the energy of neutron gas  (Chamel and 

Haensel, 2008) i.e.  

          (9) 

The nuclear clusters are treated as liquid drops of 

nuclear matter whose energy can be decomposed into 

volume, surface and coulomb terms. 

         (10) 

where  are volume energy, 

surface energy, and Coulomb energy, respectively. Pair 

and skin term are ignored because only macroscopic 

properties of ground state are reviewed.  In the simplest 

version, the drop is supposed to be incompressible with 

a density on the order of   corresponding to the 

density inside heavy nuclei. This implies that the 

volume and surface terms in Equation (10) are 

proportional to A and A
2/3

, respectively (Chamel and 

Haensel, 2008). Each contribution to the energy, 

Equation (10), can then be parameterized in terms of 

the numbers A and Z. The volume contribution in 

equation (10) is given by 
        (11) 

where  is the energy density of 

homogeneous nuclear matter and   are 

respectively the neutron and proton densities inside the 

clusters.  is the volume of the cluster. For 

consistency the energy density of the surrounding 

neutron gas is expressed in terms of the same function 

 as 

        (12) 

where  is the number density of free neutrons 

outside the clusters and w is the volume fraction of the 

cluster.  

                                               (13) 

The surface thermodynamic potential per unit area σ 

and the chemical potential  of neutrons adsorbed on 

the surface of the drop (forming a neutron skin) by 

 =          (14) 

 =         (15) 

where  is the surface area of the cluster and  is 

the number of adsorbed neutrons. Since energy is an 

extensive thermodynamic variable, it follows from 

Euler’s theorem about homogeneous functions that 

(Chamel and Haensel., 2008) 

         (16) 

The magnitude Coulomb energy from a uniformly-

charged spherical drop of radius  is given by 

 =          (17) 

 Compressible liquid drop model can be used also to 

determine the energy of the Wigner-Seitz cell, where 

𝐸𝑠𝑒l is the total energy of nuclear cluster energy, the 

neutron gas contribution and the electron energy 𝐸𝑒 
given by (Sulistyani, 2015). 

         (18) 

where  is the volume energy for cells in 

which there is a contribution of neutron gas. For the 

magnitude   is given by  

         (19) 

where   is nuclear energy density 

and  is the energy density of neutron gas. In the 

Wigner-Seitz approximation the magnitude of surface 

energy is affected by surface tension factor  and 

thickness of neutron skin  . This can be seen from the 

following equation 

         (20) 

The thickness of neutron skin  is defined as 

(Douchin and Haensel., 2000). 

         (21) 

Where and  are the neutron radius and the 

proton radius, respectively. When crytal lattice was in  
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mechanical equilibrium, we will find.  

            (22) 

where  the total Coulomb energy whose 

magnitude depends on lattice energy. So the total 

Coulomb energy is the sum of contribution from 

nucleus and lattice, which is mathematically formulated 

as 

         (23) 

According to Wigner-Seitz approximation, the 

magnitude of lattice energy is (Shapiro and Teukolsky,  

1983) 

        (24) 

by combining the equation  and , the 

equation for coulomb energy is found in total. 

         (25) 

where  is dimensionless function and given 

by  

         (26) 

The equation for electron energy is (Roca-Maza and 

Piekarewicz, 2008 ; Sharma et al., 2015)  

         (27) 

where parameter   and   defined as 

 

         (28) 

 
Neutron Stars 

 

The Structure of Neutron Stars 

Generally, the region of neutron star is divided into 

core and sheath. The core of star consists of the outer 

core and inner core. And sheath consists of a dense 

crust with atomic nucleus arranged into crystals, and a 

ocean composed of Coloumb Fluid. Structure of star 

sheath consists of atmosphere, ocean, outer crust, inner 

crust, and mantle as shown in figure (1). 

 

 

 

 

Figure 1. The structure of sheath of neutron stars (Sulistyani, 2010). 

a. Atmosphere 
The atmosphere is a thin plasma layer, where the 

spectrum of thermal electromagnetic neutron star 

radiation is formed. The spectrum, beaming and 

polarization of emerging radiation can be determined 

theoretically by solving the radiation transfer problem 

in atmospheric layers. This radiation contains valuable 

information on the parameters of the surface layer (on 

the effective surface temperature, surface gravity, 

chemical composition, strength and geometry of the 

surface magnetic field) and on the masses and radii of 

neutron stars. The atmosphere thickness varies from 

some ten centimeters in a hot neutron star (with the 

effective surface temperature  K) to a few 

millimeters in a cold one ( K). Very cold 

or ultramagnetized neutron stars may have a solid or 

liquid surface. If the radiation flux is too strong, the 

radiative force exceeds the gravitational one and makes 

the atmosphere unstable with respect to a plasma 

outflow. In a hot nonmagnetized atmosphere, where the 

radiative force is produced by Thomson scattering, this 

happens whenever the stellar luminosity L exceeds the 

Eddington limit (Haensel et al, 2007). 

b. Ocean 
Depth of ocean of neutron stars ~ 10-100 m, with mass 

density .The ocean contains of a 

neutron by degenerated electrons. This region contains 

of neutron superfluides that smaller than superfluid of 

proton and electron. The ocean is unstable due to 

influence of temperature and chemical composition on 

the surface of neutron stars. 

c. Outer Crust 

Its matter consists of ions Z and electrons e. A very thin 

surface layer (up to few meters in a hot star) contains a 

non-degenerate electron gas. In deeper layers the 

electrons constitute a strongly degenerate, almost ideal 

gas, which becomes ultrarelativistic at 

. The total pressure is determined 

by degenerated electrons. In the outer atmosphere 

layers the ions may constitute a Boltzmann gas, but in 

deeper layers they form a strongly coupled Coulomb 

system (liquid or solid). This induces beta captures in 

atomic nuclei and enriches the nuclei with neutrons. At 

the base of the outer crust the neutrons start to drip out 

from the nuclei producing a free neutron gas (Haensel 

et al., 2007). 

d. Inner Crust 

The inner crust may be about one kilometer thick. The 

density  in the inner crust varies from  at the upper 

boundary to ∼ 0.5  at the base (Chamel and Haensel, 

2008). The matter of the inner crust consists of 

electrons, free neutrons n, and neutron-rich atomic 

nuclei. The fraction of free neutrons increases with 

growing . The neutronization at  greatly 

softens the EOS, but at the crust bottom the repulsive 

short-range component of the neutron-neutron 
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interaction comes into play and introduces a 

considerable stiffness. In the bottom layers of the crust, 

in the density range from  to  the nuclei may 

become essentially nonspherical and form a “mantle” 

(Haensel et al.,  2007). 

e. Mantle 
The mantle is a layer on a neutron star that separates 

the star's core from inner crust. The structure of star's 

core is divided into the outer and inner core, with mass 

filled 99% of the total mass of neutron star. 

 
Figure 2. The structure of neutron star’s core (Haensel et al., 2007). 

 

f. Outer Core 

It is several kilometers thick. Its matter consists of 

neutrons with several percent admixture of protons p, 

electrons, and possibly muons µ (the so called npeµ 

composition). The state of this matter is determined by 

the conditions of electric neutrality and beta 

equilibrium, supplemented by a microscopic model of 

many-body nucleon interaction. The beta equilibrium 

implies the equilibrium with respect to the beta (muon) 

decay of neutrons and inverse processes. All npeµ-

plasma components are strongly degenerate. The 

electrons and muons form almost ideal Fermi gases. 

The neutrons and protons, which interact via nuclear 

forces, constitute a strongly interacting Fermi liquid 

and can be in superfluid state. 

g. Inner Core 

The inner core, where , occupies the central 

regions of massive neutron stars (and does not occur in 

low-mass stars whose outer core extends to the very 

center). Its radius can reach several kilometers, and its 

central density can be as high as (10−15)  Its 

composition and the EOS are very model dependent. 

Some of the hypotheses are material hyperionization, 

pion condensation, kaon condensation, and the 

transition phase of the oceanic layer to quark material 

(Haensel et al, 2007). 

 

The Ground State of Inner Crust of Neutron Stars 

The inner crust of neutron stars is about one kilometers 

thick. It has varying density in some region. The 

density in the upper layer is  ≈ 4.32×10
11 

gr cm
-3

. 

Meanwhile the density in the base is about 0,5 , 

where   is density of normal nuclear.  

With increasing density, the ground-state value of 

Z/A decreases and neutrons become less and less 

bound. A bonding in neutrons that decrease affects 

neutron drip phenomena, that is   ∼ . Neutron drip 

phenomena related with chemical potential of pure 

neutron . As a simple, chemical potential is a 

tendency of component exit from its parent or in the 

other definition, the motion of particle from one phase 

to the other phase. 

As long as  < 0, all neutrons are bound within 

nuclei. The neutron drip point corresponds to = 0, 

beyond this point neutrons “drip out of nuclei”, i.e. they 

begin to fill states in the continuous part of the energy 

spectrum.  

Chemical potential of a neutron in a nucleus is 

defined by (Chamel and Haensel, 2008). 

         (29) 

Where  is chemical potential of neutron and 

 is rest-mass energy of neutron. We can roughly 

localize the neutron drip point using the approximate 

mass formula for  , where, 

for simplicity, we neglect the neutron-proton mass 

difference, putting 939MeV/  and 

 is total of rest mass energy nucleon. Neglecting 

surface and Coulomb terms, we have (Chamel and 

Haensel, 2008) 

         (30) 

Where  ≡ (N−Z)/A, and  and  are nuclear 

volume and symmetry energies, respectively. 

Experimentally,  -16 MeV and  has 

magnitude 32 MeV (Chamel and Haensel, 2008). 

The inner crust of a neutron star is a unique system, 

which is not accessible in the laboratory due to the 

presence of this neutron gas. In the following we shall 

thus refer to the “nuclei” in the inner crust as “clusters” 

in order to emphasize these peculiarities. The 

description of the crust beyond neutron drip therefore 

relies on theoretical models only. The presence of 

neutron gas affect matter in inner crust to be 

compressible as the result of pressure from neutron gas. 

The inner crust of neutron stars is assumed like lattice 

in the Wigner-Seitz approximation as can be seen in fig 

[3], which has cubic structure or more complex. But the 

lattice can be substituted by spheres cell in the same of 

volum.  

 

Figure 3. The structure of body centered cubic in Wigner-Seitz 

approximation (Chamel and Haensel, 2008). 
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In the Wigner–Seitz approximation the crystal 

(represented here as a two-dimensional hexagonal 

lattice) is decomposed into independent identical 

spheres, centered around each site of the lattice. The 

radius of the sphere is chosen so that the volume of the 

sphere is equal to 1/ , where   is the density of 

lattice sites (ions) as in Fig. System is considered as 

cell unit composed of one nuclei, where the density is 

given by =  and the volum is  = 1/ , radii of 

cell unit is equal to  (where  is called 

as ion’s radius).  

 

 

Figure 4. In the Wigner–Seitz approximation the crystal (represented 
here as a two-dimensional hexagonal lattice (Chamel and Haensel, 

2008). 

 

The Ground State of Pasta of Neutron Stars 
At the base of the inner crust we find neutron rich 

nuclei with a free neutron gas. The proton fraction here 

is near 5%. At densities above 0.2 , the nuclei begin 

to touch and fuse forming complex shapes. As the 

density approaches , the complex shapes transition to 

uniform nuclear matter. These shapes have since come 

to be called nuclear pasta, due to their resemblance to 

spaghetti and lasagna and other namesake pasta. In 

total, for a 10 km radius NS, the ions of the crust may 

extend to a depth of about 1 km, and the pasta region 

may extend an additional 100 m (Caplan and Horowitz, 

2017). 

In the densest layers of the crust the Coulomb 

energy is comparable in magnitude to the net nuclear 

binding energy. The matter thus becomes frustrated and 

can arrange itself into various exotic configurations as 

observed in complex fluids. Ogasawara & Sato suggest 

that as the nuclei fill more and more space, they will 

eventually deform, touch and merge to form new 

structures. Baym, Bethe and Pethick predicted that as 

the volume fraction exceeds 1/2, the crust will be 

formed of neutron bubbles in nuclear matter. In the 

general framework of the compressible liquid drop 

model considering the simplest geometries, Hashimoto 

and friends  show that as the nuclear volume fraction w 

increases, the stable nuclear shape changes from sphere 

to cylinder, slab, tube and bubble, as illustrated in 

Figure [4] .  

 

Figure 5. Sketch of the sequence of pasta phases in the bottom layers of 
ground-state crusts with an increasing nuclear volume fraction (Chamel 

and Haensel, 2008). 
 

 

The shape of nuclei can be separated corresponding 

to dimensionality. Dimensionality has a value from one 

till three. For d = 3 related with spherical nuclei in a 

nucleon gas and spherical bubbles in a denser nuclear 

matter. For d = 2, the nuclear structures were 

cylindrical nuclei and cylindrical holes in the nuclear 

matter filled with the nucleon gas. And finally for d=1 

it’s slab structure (Haensel et al., 2007). 

According to the Bohr–Wheeler fission condition an 

isolated spherical nucleus in vacuum is stable with 

respect to quadrupolar deformations if 

         (31) 

where  and  are the Coulomb and surface 

energies of the nucleus, respectively. The superscript 

(0) reminds that a nucleus in vacuum. It is found that 

spherical clusters become unstable to quadrupolar 

deformation if  1/8 (Chamel and Haensel, 

2008). In pasta of neutron stars, relation of fraction of 

volume occupied by the clusters w with dimensionality 

is  

         (32) 

where is nucleus radii and   is Wigner-Seitz cell 

radius (Haensel et al., 2007). Every shape of nuclei in 

pasta will get the deformation. The deformation means 

displacement of nucleus from the first position into any 

position with polar angle . Let us considered a nucleus 

as a spherical liquid drop of radius R and total charge 

 in which neutrons and protons are distributed 

uniformly, the distance from the center of the drop to 

an arbitrary point on the surface with polar angle: 

         (33) 

Relation of  and  be expressed as (Iida et al., 

2001) 

        (34) 

Next, derive a fission-instability condition 

appropriate for a nuclear rod, composed of uniformly 

distributed neutrons and protons (proton charge density 

ρ) as well as having a circular section (sectional radius 

) and an infinitely long axis. For rod, a small sectional 

deformation of the quadrupole type that is uniform in 

the direction of the axis. This deformation is 

characterized by the distance, measured on a horizontal 
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section, from the axis to a point located on the surface 

with a given angle θ: 

         (35) 

Relation of  and  be expressed as (Iida et al., 

2001) 

         (36) 

As the density of the matter increases, the distance 

between neighboring nuclei decreases. Hashimoto and 

friends assumed that the constituents of the matter are 

electrons, protons and neutrons, of which the electrons 

are distributed over the whole space and the protons are 

confined in nuclei. Neutrons may be either distributed 

over the whole space or confined in nuclei (Hashimoto 

et al., 1984). To know more detail, this following will 

be explained shape of nucleus.  

 

 

 

Figure 6. Candidates for nuclear shapes. Protons are confined in the 
hatched regions, which we call nuclei. Then the shapes are, (a) Sphere, 

(b) Cylinder, (c) Board or plank, (d) Cylindrical hole and, (e) Spherical 

hole (Hashimoto et al., 1984). 

An example of a soft astromaterial is “nuclear 

pasta,” found in the inner crust of neutron stars. Under 

compression, the ions in the crust will rearrange into 

exotic shapes in order to minimize their energy. The 

competition between the nuclear attraction of protons 

and neutrons and the Coulomb repulsion between 

protons creates a variety of nonspherical nuclei. This 

transition is now believed to involve several pasta 

phases. 

One of model to analyze the structure of pasta is 

semi-classical molecular dynamics (Caplan and 

Horowitz, 2017). This model treats protons and 

neutrons as point particles, and uses a set of three 

classical two-body potentials for describing their 

interaction: 

         (37) 

         (38) 

         (39) 

Where the subscripts  and  denote the interactions 

between neutrons and protons and  is the inter-particle 

separation. The nucleons interact by a short range 

potential meant to model the nuclear interaction whose 

strength and range are determined by the parameters 

 and Λ, which are given in Table 1.  

Table 1.  Parameters of the nuclear interaction (Caplan and Horowitz, 

2017).  

 (MeV)  (MeV)  (MeV)  (fm2) 

110 -26 24 1,25 

 

The parameter  defines the strength of the short-

range repulsion between nucleons,  and  the strength 

of their intermediate-range attraction and Λ the length 

scale of the nuclear potential (Schneider et al., 2013). 

According to Thomas-Fermi approximation, total 

energy of an ensemble of  neutrons,  protons, 

and  electrons in a spherical Wigner-Seitz (WS) cell 

of volume  can be expressed as (Sharma et 

al., 2015) 

           (40) 

Where  is volume element of Wigner-Seitz cell, 

 is the magnitude of nuclei energy density, 

and  is exchange energy. The magnitude of 

 is (Viñas et al., 2017)  

        (41) 

The term  in Eq. (40) is the exchange 

part of the proton-proton and electron-electron 

interactions treated in Slater approximation (Sharma et 

al., 2015) 

        (42)                                  

By assuming that the electrons are uniformly 

distributed,  term can be written as 

(Viñas et al., 2017). 

          (43)                                  

Where equation for  are given by  

=           (44)                                                     

           (45)                                     

Symmetry Energy 
The role of symmetry energy is essential to understand 

the mechanism of stability of very-neutron rich nuclei, 

but it is also related to many phenomena occurring in 

neutron stars. The stability of matter inside neutron 

stars is very sensitive to  and its first derivative. 
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Around saturation density, neutrons tend to decay to 

protons through β-decay, and the cooling of neutron 

stars is strongly connected to the proton/neutron ratio 

as a function of density. This ratio is mainly governed 

by behavior of  as a function of density (Gandolfi, 

2012). For baryonic matter composed solely of 

neutrons and protons, proton fraction can be expressed 

as (Lattimer and Steiner, 2014) 

        (46) 

Nucleus that composed of number of protons equal 

to number of neutrons is known as symmetric nuclear 

matter (SNM). Meanwhile for matter that composed of 

neutrons only called as pure neutron matter (PNM). 

The symmetry energy  is defined as the 

difference between the energy per baryon of pure 

neutron matter and the energy per baryon of infinite 

homogeneous nuclear matter with equal neutron 

number density, , and proton number density, . 

Symmetry energy is formulated as (Gandolfi et al., 

2013). 

        (47) 

Where ,  is EoS of pure neutron matter 

and symmetryc nuclear matter, respectively. The 

energy per baryon of isospin asymmetric nuclear matter 

can be expanded in even powers of x (Gandolfi et al., 

2013), 

  (48) 

The equation for symmetry energy around the 

saturation density can be expressed as (Vida a dan 

Providência, 2010). 
 

   (49) 

Where  is symmetry energy when saturation 

(generally written in S) and L corresponds to slope of 

 , , and  are given by (Provid ncia 

et al., 2013) 

         (50) 

        (51) 

         (52) 

For pure neutron matter at  and in the quadratic 

approximation, the energy and pressure are given by  

         (53) 

        (54) 

Where   , and 

16 MeV.  is the binding energy of 

symmetric matter at the saturation density. For matter 

in β-equilibrium, it follows that. 

        (55) 

The magnitude of energy per particle from 

symmetric nuclear matter described as  

         (56) 

Where   is total rest-mass energy of baryon 

and   corresponds to Fermi energy per baryon in 

equilibrium state. While   potential energy as a 

function .  is ratio between density of  symmetric 

nuclear matter and saturation density. Mathematically  

written as. 

        (57) 

Fermi energy per baryon  can be expressed as 

(Psonis et al., 2008). 

         (58) 

The density dependent potential energy per nucleon 

V (u) of the symmetric nuclear matter is parameterized, 

as follows (Prakash et al., 1988). 

          (59) 

Where  is the Fermi momentum. The parameters 

 and  parameterize the finite forces between 

nucleons. The parameters  and   are 

determined with the constraints provided by the 

properties of nuclear matter saturation.  

MATERIALS AND METHODS 

This research is using literature study method. The 

literature study conducted by the author is to search on 

various written sources, whether in the form of books, 

articles, manuscripts and journals, or documents 

relevant. Combine collected data, analyzed, and make 

decisions. 

RESULTS AND DISCUSSION 

One of the virtues of the CLDM is its flexibility as far 

as the shape of nuclei is concerned. The terms  

and electron energy are shape independent. The surface 

and Coulomb terms do depend on the shape, but they 

can easily be calculated neglecting the curvature 

corrections. In compressible liquid drop model, 

electrons are assumed to form a uniform Fermi gas, and 



70  

 

 2: 61-72, 2019 

yield the rest plus kinetic energy contribution, denoted 

by   

Basically the differences of shape of nuclei can be 

determined by dimensionality. So, the equation of 

surface energy in equation (20) should be modified to 

be  

         (60) 

Coulomb energy in equation (25) should be 

modified too because of the dimensionality of nuclei. 

The equation for Coulomb energy can be written as  

         (61) 

where  given by   

        (62) 

In the case of d =2 (rods) one has to take the limit of d 

→2 which gives 

         (63) 

These formulae hold also for neutron gas tubes  and 

neutron gas bubbles  but in these cases one has to 

replace  into   and  stands for the radius of 

tubes or bubbles. The magnitude of pressure from one 

system that composed of some or many baryons given 

by  

         (64) 

We will find the equation for the pressure 

equilibrium condition, that is (Haensel et al., 2007). 

        (65) 

All characteristics in pasta of neutron stars after 

using compressible liquid drop model are: 

The Relation of Energy Per Baryon and Baryon 

Density 

 

Figure 7. Energy per baryon of different shapes relative to uniform npe 

matter as a function of baryon density in the inner crust (Sharma et al., 
2015). 

 

Figure 8. Energy per baryon of different shapes relative to uniform npe 
matter as a function of baryon density in the high-density region of the 

inner crust (Sharma et al., 2015). 

 In Fig [3], the results for the minimal energy per 

baryon E/A in the different shapes. The energy per 

baryon is shown relative to the value in uniform 

neutron-proton-electron (npe) matter in order to be able 

to appreciate the energy separations between shapes. 

 It can be seen in Fig [4] that the cylindrical shape is 

the energetically favoured configuration up to a crustal 

density of 0.076 fm
−3

 where a second change takes 

place to the planar slab shape. As the density of the 

crustal matter increases further, the energy per baryon 

of tubes and bubbles becomes progressively closer to 

that of the slabs (Sharma et al., 2015).  

 The spherical droplet configuration is the 

energetically most favourable shape all the way up to 

∼ 0.065 fm
−3

, see Fig. 3. When the crustal density 

reaches ∼ 0.065 fm
−3

 (approximately 10
14

 g/cm
3
), the 

nucleus occupies a significant fraction of the cell 

volume and it may happen that non-spherical structures 

have lower energy than the spherical droplets (Sharma 

et al., 2015). 

The Wigner-Seitz Cell Characteristics and Proton 

Fraction  

 

Figure 9. Radius  of the Wigner-Seitz cell and proton fraction 

 (given in percentage) in different geometries with respect to 

the baryon density (Sharma et al., 2015). 
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Figure [9] displays the cell size  and the proton 

fraction  of the equilibrium configurations 

against  for the different shapes in Sharma’s 

calculation.  shows a nearly monotonic downward 

trend when the density increases, in agreement with 

other studies of NS inner crusts. The size of the cell  

has a significant dependence on the geometry of the 

nuclear structures, as seen by comparing  of the 

different shapes. In the spherical solutions, the cell 

radius decreases from almost 45 fm at  = 0.0003 

fm
−3

 to 13.7 fm at  = 0.08 fm
−3

 near the transition to 

the core. As regards the proton fraction , it takes 

quite similar values for the various cell geometries in 

the ranges of densities where we obtained solutions  

for the respective shapes. Beyond a density of the order 

of 0.02 fm
−3

 the proton fraction  shows a weak 

change with density and after   ∼ 0.05 fm
−3

 it 

smoothly tends to the value in uniform npe matter. For 

the spherical droplet solutions, we find that  rapidly 

decreases from 31% at  = 0.0003 fm
−3

 to ∼ 3% at   

= 0.02 fm
−3

. It afterward remains almost constant, 

presenting a minimum value of 2.75% at  = 0.045 

fm
−3

 and then a certain increase up to 3.2% at the last 

densities before the core (Sharma et al.,  2015).  

CONCLUSIONS 

From the result it can be concluded that the cylindrical 

shape (Fig 4) is the energetically favoured 

configuration up to a crustal density of 0.076 fm
−3

 

where a second change takes place to the planar slab 

shape. As the density of the crustal matter increases 

further, the energy per baryon of tubes and bubbles 

becomes progressively closer to that of the slabs 

(Sharma et al., 2015). 

The spherical droplet configuration is the 

energetically most favourable shape all the way up to 

∼ 0.065 fm
−3

. When the crustal density reaches ∼ 

0.065 fm
−3

 (approximately 10
14

 g/cm
3
), the nucleus 

occupies a significant fraction of the cell volume and it 

may happen that non-spherical structures have lower 

energy than the spherical droplets. 

 shows a nearly monotonic downward trend when 

the density increases, in agreement with other studies 

of NS inner crusts. The size of the cell  has a 

significant dependence on the geometry of the nuclear 

structures. In the spherical solutions, the cell radius 

decreases from almost 45 fm at  = 0.0003 fm
−3

 to 

13.7 fm at  = 0.08 fm
−3

 near the transition to the 

core. 

Beyond a density of the order of 0.02 fm
−3

 the 

proton fraction  shows a weak change with density 

and after   ∼ 0.05 fm
−3

 it smoothly tends to the value 

in uniform npe matter. For the spherical droplet 

solutions, we find that  rapidly decreases from 31% 

at  = 0.0003 fm
−3

 to ∼ 3% at   = 0.02 fm
−3

. It 

afterward remains almost constant, presenting a 

minimum value of 2.75% at  = 0.045 fm
−3

 and then a 

certain increase up to 3.2% at the last densities before 

the core. 
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