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Abstract. Research has been conducted which shows the quantization visualization of hydrogen atom orbitals angular space in Rosen 

Morse potential system interference when the electrons are excited in the state of  = 2 and l = 1 through the polar function analysis of 

the Schrödinger Potential of Non-Central Coloumbic Rosen Morse. The polar Schrödinger equation is solved using the Romanovski 

polynomial method to obtain the polar wave function. To show the accuracy of the analysis, the polar wave function spectrum is 

visualized with Matlab-based computer programming. 
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INTRODUCTION  

Quantum mechanics has long been known as a "basic 

science" for examining the symptoms and various 

properties of microscopic systems. Its utilization not 

only succeeded in expanding and deepening 

understanding of natural events in the laboratory, but 

also resulted in widespread technological advances, and 

indirectly influenced the quality and style of human 

life. The development of quantum mechanics is rooted 

in the basic concepts of quantum theory which include 

both discrete and irregular expectations. Quantum 

theory is proven to be able to explain quantum 

phenomena from macroscopic systems such as 

superconductivity and superfluidity which have the 

potential for important applications. In the process of 

learning quantum physics, especially quantum 

mechanics always involves complex equations and the 

solution requires analysis and high thinking. Examples 

of problems that are quite complicated are the 

completion of the wave function of the Schrödinger 

equation (Greiner and Muller, 2004). The Schrödinger 

equation is obtained starting from the wave function of 

the free-moving particle. The expansion of the 

Schrödinger equation for the special case of free 

particles to the general case with a particle which 

experiences arbitrary force that changes with space and 

time is a possibility that can be pursued. But there is no 

one exact way that proves that expansion is true. All 

you can do is take the postulate that the Schrödinger 

equation applies to various physical situations and 

compares the results with the experimental results. If 

the results are suitable, the postulate must be discarded 

and another approach must be explored. In other words, 

the Schrödinger equation cannot be derived from the 

first principle, but the Schrödinger equation itself is the 

first principle.  

The Schrödinger equation has produced very precise 

predictions of the experimental results obtained and it 

must be admitted that the Schrödinger equation states a 

successful postulate concerning certain aspects of the 

physical world. It should be noted that the Schrödinger 

equation is not the addition of many postulates needed 

to provide the physical workings, because Newton's 

second law of motion which in classical mechanics is 

seen as a postulate can be derived from the Schrödinger 

equation. Research on the completion of the wave 

function in the Schrödinger equation is a very 

important research in modern physics. Various methods 

that have been developed include the Super Symmetry 

method (Compean and Kirchbach. 2008), the 

Nikiforov-Uvarov method (Ikot et al., 2011), and the 

Romanovski polynomial method (Alvarenz and 

Castillo, 2009). Based on these facts, a research was 

conducted to solve the complexity of completing the 

wave function of the Schrödinger equation by using the 

Romanovski polynomial method. As a distinguishing 

feature of this article is the system studied is the 

movement of electrons in the first excitation state with 

 = 2 and l = 1 which is disturbed by the non-central 

potential of Rosen Morse which is the main candidate 

as an effective potential in Quantum Chromodynamic 

(QCD) (Compean and Kirchbach, 2006), so that the 

Schrödinger equation model used uses a combination 

of two non-central potentials, namely the potential of 

non-central Coulomb and potential of non-central 

Rosen Morse (Flugge, 1971). 
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MATERIALS AND METHODS 

Romanovski Polynomial 

The second order hypergeometric equation is stated as 

follows, 

 
,  (1) 

   ,  ,  (2a) 

with Romanovski parameters, 

dan  , 

,  ,       (2b) 

So, the second-order hypergeometric equation is 

filled by Romanovski polynomials, namely, 

  (3) 

The Schrödinger equation can be reduced to a 

second-order differential equation expressed in the 

form of equation (3) by doing the appropriate variable 

substitution. The method used is to substitute the wave 

function of the Schrödinger equation with the 

Romanovki wave function, that is, 

 
       (4) 

with, 

 
       (5) 

Equation (5) is a Romanovski polynomial, where w 

(x) is a weighting factor that can be determined using 

Pearson differential equations, namely, 

 
.              (6) 

By substituting equations (2a) and (2b) into equation 

(6), it is obtained, 

 
,  

 
,  

 ,  

 .    (7) 

  

Determining Polar Wave Functions with 

Romanovski Polynomials 
Non-central potential which is a combination of 

Coulomb potential and Rosen Morse's non-central 

potential,  

 
   (8) 

with,  , . The Schrodinger 3 Dimension 

equation for non-central potential is written as follows, 

 
, 

 
(9) 

from equation (9) is obtained, 

 
  (10a) 

 
  (10b) 

With λ is the spatial constant with the value λ = l (l 

+ 1) for the motion of the hydrographic atom in the 

Coulomb potential. Whereas the completion of the 

wave equation in the azimuth part is obtained from 

equation (10b), that is, 

 ,   (11) 

with  is the normalization constant and m = 

 

 

Completion of the Polar Part of the Schrodinger 

Equation 
Obtained from equation (10b), the polar part of the 

Schrodinger equation is, 

 
  (12) 

with the substitution of the variable cot⁡θ = x in 

equation (11), obtained, 

 
  (13) 

By comparing equations (13) and (4), a general 

solution is obtained, 

 
              (14) 

. 

If equation (14) is substituted into equations (5) and 

(3), it is obtained, 

 
    (15) 

Equation (15) is then compared with equation (3), 

obtained, 

 
           (16) 

 , (17) 

 
. (18) 

From equations (16), (17) and (18), the polar wave 

function can be obtained through equation (14), so that 

a general equation is obtained, 
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 , (19) 

 
(20) 

 
(25) 

RESULTS AND DISCUSSION 

Table 1. Polar wave functions coulombic non-central potential 

Schrodinger rosen morse excitation State  = 2 and l = 1. 

No. 
      

 

1. 2 0 ±1 0 0 1 
 

2. 2 0 ±1 1 1 1,69 
 

3. 2 0 ±1 2 2 2,58 
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(a) (b) 

Figure 1. (a) Visualization of electron excited (  = 2 and l = 1) polar wave function undisturbed by non-central Rosen Morse potential ( ); 

(b) Amplitude of electron excited (  = 2 and l = 1) polar wave function undisturbed by non-central Rosen Morse potential ( ). 
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Figure 2. (a) Visualization of electron excited (  = 2 and l = 1) polar wave function disturbed by non-central Rosen Morse potential ( ); 

(b) Amplitude of electron excited (  = 2 and l = 1) polar wave function disturbed by non-central Rosen Morse potential ( ). 
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Figure 3. (a) Visualization of electron excited (  = 2 and l = 1) polar wave function disturbed by non-central Rosen Morse potential ( ) ; 

(b) Amplitude of electron excited (  = 2 and l = 1) polar wave function disturbed by non-central Rosen Morse potential ( ). 
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The system potential in the Schrodinger equation 

actually limits the motion of particles under the 

potential influence. If the potential of the system is 

zero, then a particle in the system will be free or 

referred to as free particles (Beiser, 1992). In the case 

of electron motion in the Hydrogen Atom system, 

electrons move around the atomic nucleus, which 

means that the electron is in a potential influence that 

limits its motion. The motion potential of electrons in 

the hydrogen atom is Coulomb potential. This Coulomb 

potential causes electrons to move around the atomic 

nucleus. Rotating electrons around the atomic nucleus 

can experience excitation to higher energy levels, for 

example from basic energy levels to value  

towards first level energy with value . When 

viewed from equation (18), the quantum number of the 

orbital l which physically affects the shape of the 

electron orbit, is influenced by the value of  and . If 

viewed from equations (16) and (17), the value of  and 

 affect the values of   and  where both of them 

are coefficients of hamiltonian intruders where when 

 and/or , illustrates the existence of 

"problems" in the system, and when  =  = 0 

illustrates that the system is not interrupted assuming 

changes in the values of  and  change 

continuously, so that eigenfunctions and eigen energy 

disturbed changes subtly into eigenfunctions and eigen 

energy is not disturbed.  

If viewed from equations (8) and (21) which are 

general equations of polar wave functions, for values 

, Rosen Morse's potential is zero which 

means the wave function does not get interference from 

Rosen Morse potential, the wave function is only 

affected by Coulomb potential alone. Visualization of 

electron motion space when excited at the first level 

energy under the influence of Coulomb potential can be 

seen in Figure 1 which shows the visualization of the 

motion of electrons with values , which 

means that electrons are only affected by Coulomb's 

potential or do not get interference from potential non-

central Rosen Morse. But for  and , the 

wave function is interrupted by Rosen Morse potential 

with the form of interference as shown in Figure 2 and 

3. The disturbance form  and  values can be 

explained by equation (18) where the value of  and  

affect the value of the l orbital quantum number which 

affects the shape of the electron orbit. The greater the 

value of  and , the greater the interference from the 

non-central potential system of Rosen Morse against 

the Coulomb potential. With the existence of potential 

non-central interference, Rosen Morse generally limits 

the movement of electrons when rotating around the 

atomic nucleus, quantitatively, the physical changes are 

shown in Figures 2 and 3, when the electrons are 

excited at the first level energy, the amplitude of the 

electron polar wave function is increasingly decreases 

with increasing  and . 

CONCLUSIONS 

From the description above, visualizing the polar wave 

function of the non-central Schrödinger potential of 

Coulombic Rosen Morse in excitation state  = 2 and l 

= 1 can be done with matlab-based programming by 

first determining the general equation of the polar wave 

function using Romanovski polynomials and special 

equations of polar wave functions by substituting a 

quantum number the potential value is undisturbed and 

potentially disturbed into the general equation of the 

polar wave function. 
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