

PROC. INTERNAT. CONF. SCI. ENGIN. ISSN 2597-5250

Volume 3, April 2020 | Pages: 283-289 E-ISSN 2598-232X

Implementation of Model-View-ViewModel (MVVM) Architecture

Pattern in the Sistem Informasi Akademik

UNIDA Gontor Mobile Application

Muhammad Syakir Arif*, Aziz Musthafa**, Dihin Muriyatmoko***

Department of Informatics Engineering, Faculty of Science and Technology, University of Darussalam Gontor,
Jl. Raya Siman KM 5 Ponorogo 63471, Indonesia. Tel. +62-352-483762.

Email: muhammad.syakir@unida.gontor.ac.id*, aziz@unida.gontor.ac.id**, dihin@unida.gontor.ac.id***

Abstract. Software architecture primarily tuned for moderating the rising software complexities and changes. Model-View-ViewModel

(MVVM) is a software architectural pattern that facilitates a separation of development of the graphical user interface from the development

of the back-end logic (the data model). University of Darussalam Gontor (UNIDA Gontor) is having an Academic System called Sistem

Informasi Akademik (SIAKAD) which supports the management of its college’s data administration. Currently, the SIAKAD UNIDA

Gontor’s performance is still far from optimal, mainly because some of its features aren’t user-friendly yet, especially when the SIAKAD

UNIDA Gontor accessed from the mobile devices. Therefore, this research aims to implement the MVVM architecture pattern in the

SIAKAD UNIDA Gontor mobile application, to increase its user-friendly aspect, especially for Android device users. This research is

carried out with Waterfall development method, using Kotlin programming language and utilising Android Jetpack. Results from the app

testing with Black Box method show that the application is running well and have no error. Next, results from the questionnaire distributed

to the users (students, lecturers and BAAK staffs) show that the application run well and satisfying. From those trial results, show that the

implementation of MVVM on SIAKAD UNIDA Gontor Android application has been successful according to the scenario and ready to be

applied in the even semester of 2019/2020 campus’ academic year and so on

(https://play.google.com/store/apps/details?id=com.amoled.sidago). Further research and development, can be directed to the addition of

new features and can support another mobile operating system, such as iOS, Tizen, Harmony OS, etc.

Keywords: Android Jetpack, Kotlin, MVVM, Sistem Informasi Akademik, UNIDA Gontor

INTRODUCTION

Smartphones are very sophisticated media in accessing

information and data services; this enables all areas of

human life to be done more easily with the help of

smartphones (Nuari, 2014). Therefore, according to the

statistical data reported by Katadata states that in 2019,

smartphone users in Indonesia will reach 92 million

users. (Katadata, 2016).

Android, as one of the open-source smartphone

operating systems, always achieves greater achievements

every year. According to Google's CEO, Sundar Pichai

at the 2017 Google I/O conference, he stated that at that

time, Android had reached 2 billion monthly active users

worldwide (Popper, 2017). While in Indonesia, statistics

show that shares for the Android mobile operating

system are also increasing every month, recorded at

88.37% in December 2017 (“Market share of mobile

operating systems in Indonesia from January 2012 to

December 2017,” 2018).

Software systems have become very complicated and

sophisticated to meet the demands of newer businesses.

Software architecture is perfect for overcoming

complexity and changing software (Raj, Raman, &

Subramanian, 2017). Architectural patterns are well-

known patterns as solutions to solve software

architecture problems. The architectural pattern of

software is the 'organisation' of the code as a whole

(Tiari, 2015). Model-View-View Model (MVVM) is one

of the software architectural patterns that carry a

separation of graphical user interfaces from business

logic processes or back-end logic. (Wikipedia

contributors, n.d.) (Saleh, 2017).

University of Darussalam Gontor (UNIDA Gontor) is

one of the Higher Education Institutions in Indonesia

located in Ponorogo Regency, East Java. As one of the

supports in the management of lecture data

administration, UNIDA Gontor has an Academic System

(SIAKAD) which is managed by the Pusat Pelayanan

Teknologi Informasi dan Komunikasi (PPTIK). At

present, SIAKAD cannot be accessed in a user-friendly

manner when using a mobile device. Based on these

constraints, up to now, the use of SIAKAD has not been

considered optimal.

This study aims to implement the MVVM

architecture pattern in the development of the SIAKAD

UNIDA Gontor application. Implementation is carried

out using the Kotlin programming language and utilising

Android Jetpack as an Android Architecture Component.

The application is expected to provide safe, fast and easy

SIAKAD services so that the products of this study are

in harmony with Maqashid Shari'ah.

284 PROC. INTERNAT. CONF. SCI. ENGIN. 3: 283-289, April 2020

MATERIALS AND METHODS

Materials

The integrated development environment that used is the

Android Studio IDE, with Kotlin programming language

to handle back-end logic and XML for the front-end

layout. Then the data source is from UNIDA Gontor's

Application Programming Interface (API), as the main

source of data retrieval. Then for local data sources using

Room, which is an Android architecture component for

the Android application database based on SQLite. Local

data source functions as a temporary container of data

taken from the API. MVVM architecture pattern

implementation will be done by utilising Android Jetpack

which has Android Architecture Components, such as

Data Binding, LiveData, ViewModel, Room and

Navigation.

Methods

The author used the Waterfall design method, which

consisted of five stages as explained below:

Figure 1. The phase of the Waterfall model (Sommerville, 2011).

 Requirements Definition

Application users consist of the Student, Lecturer and

Public categories. Therefore, each category has its own

system requirements. The needs of each user category

outlined in the following tables:

Table 1. System requirements for the Public user category.

No System Requirements

1 Users can view campus news

2 Users can view campus profiles, facilities, etc.

Table 2. System requirements for the Students user category.

No System Requirements

1 Students can log into the application

2 Students can make Study Plan Cards (KRS)

3 Students can confirm payment

4 Students can see a list of courses

5 Students can see course schedules

6 Students can see the Study Result Card (KHS)

7 Students can see their tuition bills

Table 3. System requirements for the Lecturers user category.

No System Requirements

1 Lecturers can log into the application

2 Academic Supervisor Lecturers (Dosen PA) can see the

list of guidance student names

3 Academic Supervisor Lecturers (Dosen PA) can receive

student’s KRS reports

4 Academic Supervisor Lecturers (Dosen PA) can approve

student KRS reports

5 Academic Supervisor Lecturers (Dosen PA) can give

permission for changes in student KRS

6 Lecturers can see class schedules

7 Lecturers can see the value of student guidance

 System and Software Design

Following are the Use Case Diagrams for the features in

the Gontor SIAKAD UNIDA application:

Figure 2. Use Case Diagram of the SIAKAD UNIDA Gontor application.

Based on Figure 2, it can be seen that the Student and

Lecturer users are derived from General users, where all

the Public users can access some common features such

as the news menu and campus profile. Then for features

that can be accessed, each category of users has been

shown in the diagram above, according to their

respective categories.

Furthermore, an explanation of each use case shown

in Figure 2 is as follows:

 ARIF et al. – Implementation of MVVM in SIAKAD Application 285

Table 4. Use Case identification.

No Use Case Name Description Actor

1 See campus profile Actors can view UNIDA Gontor's campus profile information Public, Students,

Lecturers

2 See campus news Actors can view the UNIDA Gontor campus news Public, Students,

Lecturers

3 Login Actors can enter into the SIAKAD account using the specified account Students, Lecturers

4 Account verification Account verification process so that actors can enter into the SIAKAD

account

Students, Lecturers

5 KRS Service Actors can access KRS service features Students, API

6 KHS Service Actors can access KHS service features Students, API

7 List of courses Course list data retrieval process API

8 Access class schedules Class schedule data retrieval process Students, Lecturers, API

9 Receive KRS submissions Lecturers can receive a list of KRS submissions from their guidance

students.

Students, Lecturers

10 KRS Changes Lecturers can permit to change the KRS data Students, Lecturers

11 Student Payments Actors can see a list of payment or tuition bills Students

12 Student Guidance Actors can monitor student guidance Dosen

Because this research will apply the MVVM

architecture pattern, the following is the architectural

design that will be applied in the SIAKAD UNIDA

Gontor application:

Figure 3. The application architecture design implements MVVM.

In Figure 3 above, it is explained that the View

category includes Activity and Fragment. Then for the

ViewModel category, it includes the ActivityViewModel

and FragmentViewModel classes. Both of these classes

implement (inherit) LiveData libraries that handle the

presentation of data to be displayed. The DataBinding

library links the View and ViewModel components.

Then there is the AppRepository class which

functions to handle connections to the database used by

the application, both sourced from local data sources and

network data sources.

Furthermore, the Model category includes classes

that will handle data management in the local data

source consisting of the Room library and the Model class

(many Model classes are adapted to the data to be

processed). Local data source uses SQLite storage.

Next, there is the NetworkDataSource class which

handles data fetching from the API or from the local

database.

 Implementation and Unit Testing

For the Implementation phase, the MVVM architecture

pattern is implemented when the author programs the

SIAKAD UNIDA Gontor application. Then for Unit

Testing, the author conducts trials using the Black Box

method.

 Integration and System Testing

For the Integration and System Testing phase, the author

tests the application with respondents' representatives

from the BAAK Staff, Lecturers and Students. The

results of the trial were evaluated using questionnaire

data from the respondents.

 Operation and Maintenance

At this phase, the application is improved based on

suggestion and evaluation from the user or supervisor,

then updates the application. User evaluations can be

taken based on trial results as well as assessments

provided on the Google Play Store (if the application has

been published).

RESULTS AND DISCUSSION

This chapter discusses research methods for the

Implementation and Unit Testing (the third phase of

Waterfall), Integration and System Testing (the fourth

phase of Waterfall), and Operation and Maintenance (the

fifth phase of Waterfall). Regarding the results and

discussion, the author will focus only on discussing the

results of the application of MVVM on the KRS feature.

286 PROC. INTERNAT. CONF. SCI. ENGIN. 3: 283-289, April 2020

All features in the application have implemented

MVVM, which is the same concept as the KRS feature.

Implementation and Unit Testing

For the sake of the neatness of the package structure and

making it easier to place classes, the author groups the

classes in the project as follows:

Figure 4. The class hierarchy in the project for KRS features.

Figure 4 shows the classes used to treat KRS features

with MVVM architecture pattern. Meanwhile, the

following is an illustration showing the KRS Model to

View through ViewModel intermediaries:

Figure 5. Illustration that is showing KRS Models to View through

ViewModel.

In Figure 5, it is shown that the KRS Model, which

contains data kode_mk, nama_mk, sks, and nama_dosen

is displayed to View with LiveData intermediaries in

ViewModel. The use of Data Binding is very

instrumental in this process. Data Binding can directly

respond to data changes that occur in LiveData in

ViewModel, then display it in the User Interface (View).

Here is an illustration:

Figure 6. Illustration of the relationship between LiveData in ViewModel

with Data Binding.

Then, the results of the implementation of the

MVVM architecture pattern are presented in the

following illustration diagram:

Figure 7. The illustration of MVVM architecture that was successfully

applied, one of them is in the student KRS feature.

From Figure 7, it can be explained that to implement

MVVM in the KRS feature, it takes a hierarchy between

classes as illustrated. For the View components, it is

consists of KrsActivity and KrsFragment. Then for the

ViewModel component, named KrsViewModel. Data

Binding plays a role in channelling data between the

View and ViewModel components. Then, the Repository

class is tasked to manage two database sources in the

application, namely LocalDataSource and

RemoteDataSource. RemoteDataSource is responsible

for retrieving KRS data from the API. Meanwhile,

 ARIF et al. – Implementation of MVVM in SIAKAD Application 287

LocalDataSource is responsible for storing data from the

API to the SQLite Database and sending the data if at

any time requested by the Repository class. This will be

useful when the application is not connected to the

internet, so the KRS data that is stored locally will be

displayed to the user.

Then for Unit Testing results, the author uses the

Black Box method and states that all application features

function well and there is no error or force close. Unit

Testing is carried out using the latest version of Android

10 (Beta). Here are some examples of the display of the

SIAKAD UNIDA Gontor application:

Figure 8. The login page uses the UNIDA Gontor’s email.

As shown in Figure 8, the user will first select the

account category. Then after that, pressing the button

‘Masuk dengan email UNIDA Gontor’ then the user will

be asked to fill in the email data along with the

password. Google Services handle the login process to

the UNIDA Gontor's email account. Google account

authentication services can be integrated with the

application SIAKAD UNIDA Gontor as well.

Figure 9. Comparison of the homepage interfaces for each category of

Students, Lecturers and Public.

In Figure 9, it is shown that the home page for the

student category includes KRS Submission menus, Study

Plan Cards (KRS), Study Result Cards (KHS), Lecture

Schedules, Graduation Lists and Student Payments.

While the home page for the lecturer category contains a

menu of Student Guidance and KRS Submission.

Figure 10. The Process of Filling KRS by Students.

In Figure 10, the process of filling KRS by students is

shown. The left-side figure shows the dropdown menu for

each semester. Then the middle-side figure shows the list

of courses in the related semester. Then in the right-side

figure shows the details of the selected course.

Figure 11. Display interface of KRS Submission Confirmation process by

Lecturer.

Figure 11 shows the process of KRS Submission

Confirmation by the related Student Advisor. In the left-

side figure, the lecturer looks at the list of KRS

submissions from the student's guidance. Then in the

middle-side figure, the KRS details of the student are

displayed, then lecturer can approve or reject the

submission. Then in the right-side figure shows the KRS

information successfully approved or rejected.

Integration and System Testing

For this phase, the author tests the application to the user.

The users are representatives of the BAAK Staff,

Lecturers and Students of UNIDA Gontor who are

willing to become respondents.

 Application Testing by BAAK Staff

This test aims to ensure that the system integration in the

application of SIAKAD UNIDA Gontor is matching the

Standard Operational Procedure (SOP) set by the

Academic and Student Administration Bureau (BAAK).

This test was carried out by Deputy Head of BAAK

UNIDA Gontor named Al-Ustadz Samsirin, M.Pd.I. The

features tested are KRS Features and KHS Features.

288 PROC. INTERNAT. CONF. SCI. ENGIN. 3: 283-289, April 2020

From these trials, the following questionnaire results were obtained:

Table 5. Questionnaire results of Application Testing.

No Indicator Question Score

1 The functions and features of the application are consistent with the purpose

of the application

5

2 The flow of the KRS submission process in the application is matching the

SOP

4

3 System Integration

Aspects

The flow of the process of seeing KHS in the application is matching the SOP set by

BAAK UNIDA Gontor

4

4 The presented Course Data is matching with the data in SIAKAD 5

5 The presented Class Schedule is matching with the data in SIAKAD 5

6 The application runs smoothly, and no errors occur 4

7 The graphical interface is easy to recognise 3

8 Interfaces

Interaction

Aspects

The graphical interface is easy to remember 3

9 Posts in the application are easy to read 3

10 The application is easy to operate/use 4

11 The colour display of the application is comfortable to see and not boring 3

12 Easily access SIAKAD services through the application 4

Average 3,9166667

Note: The indicator values specified in the questionnaire are 5 = Strongly Agree, 4 = Agree, 3 = Normal, 2 = Disagree, 1

= Strongly Disagree.

 Application Testing by Lecturers

The test was conducted with representative respondents

from lecturers of Informatics Engineering UNIDA

Gontor. The indicator values specified in the

questionnaire are 5 = Strongly Agree, 4 = Agree, 3 =

Normal, 2 = Disagree, 1 = Strongly Disagree. The

following is an assessment diagram of the trial:

Figure 12. Lecturer Questionnaire Results for System Integration Aspects.

Figure 13. Lecturer Questionnaire Results for Interface Interaction

Aspects.

 Application Testing by Students

The test was conducted with five respondents

representing respondents from Informatics Engineering

students at UNIDA Gontor. The indicator values

specified in the questionnaire are 5 = Strongly Agree, 4 =

Agree, 3 = Normal, 2 = Disagree, 1 = Strongly Disagree.

The following is an assessment diagram of the trial:

Figure 14. Student Questionnaire Results for System Integration Aspects.

Figure 15. Student questionnaire results for Interface Interaction Aspects.

 ARIF et al. – Implementation of MVVM in SIAKAD Application 289

Operation and Maintenance

 Improvements in the System Integration Aspect

No Improvements Status

1 Please disable auto-login that caused by user

history, when users sign in their account using

email

Done

2 Improved data duplication of the KHS and

KRS features

Done

 Improvements in Interface Interactions Aspect

No Improvements Status

1 The User ID display does not need to be

displayed

Done

2 “NIY” to be changed to “Kode Dosen” Done

3 Set the EditText to non-editable Done

4 In KRS feature, there are still duplications in

certain subjects

Done

5 Give a confirmation dialogue when the lecturer

approves/rejects KRS submission

Done

Discussion

The implementation of MVVM on SIAKAD UNIDA

Gontor for Android mobile users in improving user-

friendly has been successful. Black Box test results show

that this application runs smoothly and without errors.

The results of the questionnaire test showed that the

implementation of MVVM was matching the scenario

and received positive responses from students, lecturers

and staff of BAAK UNIDA Gontor. This Android

mobile application is ready to be applied from the

2019/2020 school year even semester onwards

(https://play.google.com/store/apps/details?id=com.amol

ed.sidago). Further development can be directed to the

addition of new features. Also, it can be developed for

another mobile operating system, such as iOS, Tizen,

Harmony OS, etc

ACKNOWLEDGEMENTS

Our gratitude to the University of Darussalam Gontor

Ponorogo for funding this research.

REFERENCES

Katadata. (2016). Pengguna Smartphone di Indonesia 2016-2019.

Retrieved March 2, 2019, from

https://databoks.katadata.co.id/datapublish/2016/08/08/penggu

na-smartphone-di-indonesia-2016-2019

Market share of mobile operating systems in Indonesia from

January 2012 to December 2017. (2018). Retrieved December

8, 2018, from

https://www.statista.com/statistics/262205/market-share-held-

by-mobile-operating-systems-in-indonesia/

Nuari, N. (2014). Perancangan Aplikasi Layanan Mobile

Informasi Administrasi Akademik Berbasis Android

Menggunankan Webservice (Studi Kasus Reg. B Universitas

Tanjungpura). Jurnal Sistem Dan Teknologi Informasi

(JustIN), 1, 1–7.

Popper, B. (2017). Google announces over 2 billion monthly

active devices on Android. Retrieved December 8, 2018, from

https://www.theverge.com/2017/5/17/15654454/android-

reaches-2-billion-monthly-active-users

Raj, P., Raman, A., & Subramanian, H. (2017). Architectural

Patterns. Packt Publisher.

Saleh, H. (2017). MVVM architecture, ViewModel and LiveData

Part 1. Retrieved December 6, 2018, from

https://proandroiddev.com/mvvm-architecture- viewmodel-

and-livedata-part-1-604f50cda1

Sommerville, I. (2011). Software Engineering (9th ed.).

Massachusetts: Pearson.

Tiari, P. K. (2015). What’s the difference between design patterns

and architectural patterns? Retrieved December 9, 2018, from

Stack Overflow website:

https://stackoverflow.com/a/33757364

Wikipedia contributors. (n.d.). Model–view–viewmodel.

Retrieved December 8, 2018, from

https://en.wikipedia.org/w/index.php?title=Model–view–

viewmodel&oldid=871113657

http://www.statista.com/statistics/262205/market-share-held-by-mobile-operating-systems-in-indonesia/
http://www.statista.com/statistics/262205/market-share-held-by-mobile-operating-systems-in-indonesia/
http://www.statista.com/statistics/262205/market-share-held-by-mobile-operating-systems-in-indonesia/
http://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
http://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
http://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users

THIS PAGE INTENTIONALLY LEFT BLANK

