

PROC. INTERNAT. CONF. SCI. ENGIN. ISSN 2597-5250

Volume 3, April 2020 | Pages: 397-403 E-ISSN 2598-232X

Secure Naïve Bayes Classification without Loss of Accuracy

with Application to Breast Cancer Prediction

Artrim Kjamilji1, Arben Idrizi2, Shkurte Luma-Osmani3, Ferihane Zenuni-Kjamilji4

1Faculty of Engineeringand Natural Sciences, Computer Science and Engineering, Sabancı University,Istanbul-Turkey
2Faculty of Natural Sciences and Mathematics, Graduate school of Mathematics, University of Tetovo, Tetovo-North Macedonia

3Faculty of Natural Sciences and Mathematics, Bureau of Innovations, University of Tetovo, Tetovo-North Macedonia
4Faculty of Philosophy, Professional Education, University of Tetovo, Tetovo-North Macedonia

E-mails: artrimk@sabanciuniv.edu1, aidrizi@hotmail.com2 shkurte.luma@unite.edu.mk3, ferihane.zenuniqamili@gmail.com4

Abstract. The classification and prediction accuracy of Machine Learning (ML) algorithms, which often outperform human experts of the

related field, have enabled them to be used in areas such as health and disease prediction, image and speech recognition, cyber-security

threats and credit-card fraud detection and others. However, laws, ethics and privacy concerns prevent ML algorithms to be used in many

real-case scenarios. In order to overcome this problem, we introduce a few flexible and secure building blocks which can be used to build

different privacy preserving classifications schemes based on already trained ML models. Then, as a use-case scenario, we utilize and

practically use those blocks to enable a privacy preserving Naïve Bayes classifier in the semi-honest model with application to breast

cancer detection. Our theoretical analysis and experimental results show that the proposed scheme in many aspects is more efficient in

terms of computation and communication cost, as well as in terms of security properties than several state of the art schemes.

Furthermore, our privacy preserving scheme shows no loss of accuracy compared to the plain classifier.

Keywords: privacy-preserving, Naive Bayes, classification, breast cancer prediction

INTRODUCTION

Many modern technologies, such as cloud computing,

wearable and ubiquitous computing, Internet of Things

(IoT) and others, have enabled us to collect huge amount

of data and come to what is now known as Big Data,

were annually it is expected to be generated 44

zettabytes of data only throughout 2020 alone [1]. This

data hides in itself important patterns and information

that the human brain cannot comprehend. Nevertheless,

rapid advancements of the computational power of

modern processors and computer systems, combined

with the increasing network speeds, have enabled us to

take benefit of those deeply hidden patterns and throve

of information. Especially we see this benefit when we

use this data for the purpose of training (building)

Machine Learning (ML) models (algorithms), which in

their prediction often surpass human experts of the

corresponding field [2]. Those algorithms include deep

learning (neural networks), support vector machines

(SVM), Naïve Bayes, decision trees, random forests, etc.

However, there is a drawback. Due to law and privacy

requirements, no entity would be comfortable to publicly

share their data for the purpose of training ML models.

Rather, they would like to do it in what is called as

privacy preserving training where, roughly, those

entities use privacy-preserving techniques to train ML
models which enables them to hide their data during the

training process. On the other hand, after we have

obtained the trained model, we face the same privacy

concerns during the prediction phase. Namely, the user

(client) that has unclassified data doesn’t want to reveal

this data neither the final prediction (classification) to the

server that holds the trained model, while the server

doesn’t want to reveal any parameter of the trained

model to the user. This process is called privacy

preserving classification (prediction).

Nearly a couple of decades ago, [3-4] almost at the

same time came with the notion of privacy preserving.

Throughout the years many schemes have been proposed

that deal with either privacy preserving training or

classification or both for various machine learning

algorithms. Some of them include privacy preserving

deep learning [2,5], decision trees [6-8], hyperplane

systems and SVM [6-8], Naïve Bayes [6-10] and others.

In this paper we deal only with privacy preserving Naïve

Bayes classifiers and leave for the follow-up papers the

rest of ML algorithms. Due to space constraints here we

will exclusively address the issue of privacy preserving

classification based on the Naïve Bayes algorithm and

leave open the issue of privacy-preserving training with

multiple dataset owners involved for an extension of this

paper.

PRELEMINARIES AND PARTICIPANTS

Naïve Bayes classifier
Let’s say that each of the dataset’s records (transactions,

rows, instances) have f features. Each of those feature

sets can have certain values, i.e. Fi = {V1,Fi, V2,Fi ,…,V|Fi|,

Fi}, where |Fi| is the cardinality (number of elements) of

398 PROC. INTERNAT. CONF. SCI. ENGIN. 3: 397-403, April 2020

set Fi and vj,Fi is it’s j-th element of set Fi, with 1 ≤ i ≤ f

and 1≤j≤|Fi|. Hence each of the dataset record belongs

to theset of features F⊆ 𝑅𝑓 which is a Cartesian product

of the features, hence F={F1xF2x …xFf}.All of the

instances are labeled (belong to) one of the c classes

from the set of classes C={C1, C2, … Cc}. In total we

have NT transactions (records) in the dataset. We denote

with 𝑁(𝐶𝑘)the frequency (number) of transactions that

belong to class Ck and with 𝑁(𝑉𝑗,𝐹𝑖; 𝐶𝑘) the frequency of

transactions that has label Ck for the j-th value of the

feature Fi. Correspondingly, we denote the class

probabilities as 𝑃(𝐶𝑘) =
𝑁(𝐶𝑘)

𝑁𝑇
and the conditional value-

class probabilities as 𝑃(𝑉𝑗,𝐹𝑖|𝐶𝑘) =
𝑁(𝑉𝑗,𝐹𝑖;𝐶𝑘)

𝑁(𝐶𝑘)
, where 1≤i

≤ f, 1 ≤ j ≤ |Fi| and 1 ≤ k ≤ c. Those probabilities actually

represent the Naïve Bayes trained model.

For an unclassified (un-labeled) query vector X={X1,

X2, … Xf}, where 𝑋 ∈ 𝐹 (hence 𝑋𝑖 ∈ 𝐹𝑖, for 1 ≤ i ≤ f),

we denote as C(X) the process of assigning a label

(classifying) this query according to the maximum

likelihood 𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤c𝑃(𝐶𝑗|𝑋). Using the

Naïve Bayes formula:

𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑘≤c

𝑃(𝐶𝑘)𝑃(𝑥1, … 𝑥𝑓|𝐶𝑘)

𝑃(𝑥1,…𝑥𝑓)
 (1)

since the term 𝑃(𝑥1, … 𝑥𝑓) is the same for all classes,

then naively assuming that all of the features are

independent between each-other, hence

𝑃(𝑥1, … 𝑥𝑓|𝐶𝑘) = ∏ 𝑃(𝑋𝑖|𝐶𝑘)
𝑓
𝑖=1 , then (1) can be re-

written as:

𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑘≤c𝑃(𝐶𝑘) ∏ 𝑃(𝑋𝑖|𝐶𝑘)
𝑓
𝑖=1 (2)

Despite its’ naïve assumptions, yet Naïve Bayes is

among most widely used ML classifiers due to its’

simplicity and high prediction accuracy [9-10].

Public Somewhat homomorphic encryption
Public encryption schemes allow asymmetric encryption

techniques were there is a pair of two keys for

encryption/decryption, one is public and the other one is

kept secret. If a certain message is encrypted with one

key, it can be decrypted with the other one. Public

somewhat homomorphic encryption (SWHE) schemes

allow certain operations (such as additions and

multiplications) to be done on the ciphertexts without

decrypting them, which are known as homomorphic

operations.Most SWHE schemes work with integers. In

this sense, we denote by [.] an encryption of an integer

message using a SWHE scheme, hence

[ctxt]=Encrypt(m), where Encrypt(.) is the encryption

function and m is a plaintext message. Hence for the

homomorphic operations we have [ctxt3]=[ctxt1]+[ctxt2],

and [ctxt4]=[ctxt1]x[ctxt2]. SWHE schemes also allow

for operations between plaintexts and ciphertexts, i.e.

[ctxt5]=ptxt+[ctxt1] and [ctxt6]=ptxt+[ctxt1]. The number

of multiplications though is limited and it’s known as the

circuit depth of the scheme. The decryption function is

denoted Decrypt(.), thus m = Decrypt([ctxt]). SWHE

schemes are mostly based on hard problems on lattices,

such as Ring Learning with Error (RLWE) [11]. Using

the Chinese Remainder Theorem (CRT), Smart et.al [12]

enabled a Single Instruction Multiple Data (SIMD)

fashion of homomorphically executing the operations

over encrypted data (fig.1). This opened the way for

huge computation improvements by executing the

homomorphic operations in parallel in component (slot-

wise) manner, with no extra cost(fig.1). This is

especially helpful for ML algorithms, which often do

several operations that are similar (of same nature) with

each-other, so they can be done in SIMD fashion.

Integers are encoded on polynomial rings of size N,

where the plaintexts have coefficients modulo tp and

ciphertexts modulo qc. CRT encoded ciphertexts also

allow for rotation of slots, which will be denoted as <<R

or >>R in the figures, where R is a random integer that

shows by how much the slots will be rotated, while the

arrows show the direction of the rotation. For the

pseudocodeswe will use the function Rotate([ctxt], R)

which returns a rotation to the right (>>) for R slots of

the ciphertext [ctxt], andIf R is a negative integer then

the rotation is done for R slots to the left. If not stated

otherwise, throughout the paper we assume that all of the

encryptions are done by firstly encoding the plaintext

messages to workin SIMD fashion and then encrypt

them with a SWHE public scheme.

Figure 1. Illustration of SIMD regime of homomorphic operations.

System participants and their model

In our system we have 2 participant (entities): a server

that has an already trained Naïve Bayes based model,

and a client (user) that has an un-classified query (data)

that he wishes to classify in privacy preserving fashion

using the server’s trained model (fig.1). This means that

while being engaged in the privacy preserving protocol,

the user hides both the un-classified query, the final

prediction or any intermediate result from the server,

while the server hides from the client all theparameters

related to the trained model. We also assume that both

the client and server are from the semi-honest (honest-

but-curious) model, which means that they follow the

protocol but on the background (while running the

protocol) they try to infer some data which they are not

 KJAMILJI et al. – Secure Naïve Bayes classification without loss of accuracy … 399

supposed to do. Motivations for parties to be from the

semi-honest model and hence follow the protocol are

given in [9-10].

Figure 2. Participants (a server and a client) in the semi-honest model

BUILDING BLOCKS

In this section we will give some adoptable and flexible

secure building blocks, which in turn can be used to

build more complex algorithms in privacy preserving

fashion

Figure 3. Illustration of the secProdOfBlocks algorithm.

Secure product of blocks of n slots
Allows to securely find the product of a block of n slots

in a SIMD encoded ciphertext. Its illustration is given in

fig.3, while its pseudocode is shown in algorithm 1.

ALGORITHM 1: secProductOfBlocks

INPUT: [inputCipher], n

n: size of the block of slots, starting from slot 0

OUTPUT: [result]
[result]: contains the product of each block of n slots at

the beginning (first slot) of the corresponding block

1 [result] = [inputCipher]

2 for i = 1 to log2(n)

3 [result] = [result] x Rotate([result], -2i) // fig.3

4 return [result]

Secure SIMD Comparison
It’s a secure two party computation, where Party 1 has

two encrypted ciphertexts [A] and [B] (not necessarily

encrypted to enable SIMD), while Party 2 has the secret

(decryption) key. In the end Party 2 learn which one is

greater, but not by how much. Party 1 learns nothing.

The SIMD version of the secure comparison algorithm is

illustrated in fig.4., while the pseudocode is given in

algorithm 2.

ALGORITHM 2: secComp

INPUT:

Party 1:[A], [B]– integers encrypted by Party 1’s pub.

key Pk

Party 2: secret key (sk) which can decrypt the

ciphertexts

OUTPUT: result

result: If result ≥ 0 then A ≥ B, otherwise A< B

Party 1:

1 [C] = ([A] - [B]) x R // R > 0, fig.4

2 send [C] to Party 2

Party 2:

3result = Decrypt([C])

Fig.4. SIMD version secure comparison.

Secure argmax over encrypted data

In this scenario Party 1 has an array of c encrypted

integers using the public key of Party 2. They are not

necessarily encrypted to enable SIMD. Party 2 has the

secret (decryption) key. In the end Party 2 learns only

the index of the maximum integer of the array and

nothing else (neither by how much the numbers in the

array differ nor their relative order in term of which one

is greater). Party 2 learns nothing. Algorithm 3 gives the

pseudocode for the secure argmax protocol.

ALGORITHM 3: secArgmax

INPUT:
Party 1: [arr[]] - array of c integers, encrypted by P1’s

Pk

Party 2: secret key (sk) which can decrypt the

ciphertexts

OUTPUT:maxIndex
maxIndex: the index of the maximum integer in array[]

Party 1:

1 permute the array using random permutation π(arr[])

2 compute all comparisons = {π(arr[xi])- π(arr[xj])}Rij

400 PROC. INTERNAT. CONF. SCI. ENGIN. 3: 397-403, April 2020

//for i = 1, …c and j=i+1, …n; Rijis a random integer

3 send comparisons toParty 2

Party 2:

4receive the c(c-1)/2 comparisons combinations.

decrypt them.Find the maximum one and send {σ1, …

σc}

to Party2, where σi=[0] if π(array[xi]≠max, otherwise σi

= [1]

5 send all σi in order (starting from σ1 to σn) to Party 1

Party 1:

6compute 𝑣 = ∑ π−1(𝑖) ∙𝑖 𝜎𝑖 and send v to A

//π-1(i) are the indices of the inverse permutation, not

integers

7 send 𝑣 to Party 2

Party 2:

8 maxIndex=Decrypt(𝑣) //index of the max. integer of

arr[]

Basically, in line 1 Party 1 permutes the array with a

random permutation π, and in line 2 for each pair it does

the secure comparison technique (as its described in

algorithm 2) and sends all of the comparison to Party 2

(line 3). Party 2decrypt the results for all the pair

comparisons (line 4), and having in mind the logic of

algorithm 2 it finds the index of the maximum integer

(the one for which all the comparisons yielded a result

greater than zero) of the permuted array. Then it encrypts

n integers such thatσi = [1] if i is the index of the

maximum integer of the permuted array, otherwise σi =

[0], for i=1, … c (line 4) and sends them to Party 1 again

(line 5). Party A finds the encryption of the maxIndex of

the original array arr[] by homomorphically executing

𝑣 = ∑ π−1(𝑖) ∙𝑖 𝜎𝑖, where π-1(i) is the index value of the

inverse permutation of π (line 6) and sends this 𝑣 to

Party 2 (line 7).Finally, Party 2 decrypts v to find the

index of the integer with the biggest value in the original

array arr[] (line 8).

SECURE NAÏVE BAYES CLASSIFICATION

Algorithm 4 gives the pseudocode for the privacy

preserving Naïve Bayes classification. As an input the

server has the trained model which includes all the class

and the conditional value-class probabilities. The trained

model consists of c plaintexts (one for each class)

encoded to enable plain SIMD operations on them. Each

of the classes’ plaintext at the first slot has the

probability of that class, followed by the class-value

conditional probabilities of all values among all features

in an ordered sequence (i.e. starting with the conditional

probability of the first value of F1with the class, then

second value, and so on till the end). The same goes for

other features. SotrainedModel =

{𝑃(𝐶𝑘), 𝑃(𝑉1,𝐹1|𝐶𝑘), 𝑃(𝑉2,𝐹1|𝐶𝑗), … 𝑁(𝑉|𝐹𝑓|,𝐹𝑓|𝐶𝑘)}
𝑘=1

𝑐
.

ALGORITHM 4: PPNaiveBayesClassification

INPUT:

Server: trainedModel = {class_C1, class_Ck} //fig.4

Client: secret key (sk), query feature vector

OUTPUT:finalClassification
finalClassific.: the predicted label of class C={C1, C2,

… Cc}.

Client:

1 [queryFV] = Encrypt(query)

2 [mask] = Encrypt({1, 1, …, 1})

3 [inverseQFV] = [mask] - [queryFV]

4 send [queryFV] and [inverseQVF] to Server

Server:

5 for k = 1 to c

6 [res] = [queryFV] x class_Ck // fig.6

7 [res] = [res] + [inverseQVF] // fig.7

8 [Prob[k]] = secProductOfBlocks([res], ∑ |𝐹𝑖| +
𝑓
𝑖=1

1)

Server (as Party 1) and Client (as Party 2):

9 finalClassification= secArgmax (Prob[])

This is illustrated in fig.5. Since SWHE schemes

don’t work with real numbers, all of the probabilities are

multiplied by a constant K and rounded to the closest

integer number. For the Naïve Bayes case it has been

shown that it is sufficient for this K to be between 8-10

bits so to have the same accuracy as the plain (non-

privacy preserving) classifier [13].

Figure 5. SIMD encoding of the probabilities related to class Ck.

On the other hand, besides the secret key, as an input

the client also has the un-classified “query feature

vector” that he wishes to classify. It is constructed as a

single ciphertext that has one slots for each of the values

of all of the features arranged in ordered sequence. If a

certain value of a certain feature is part of the query we

put 1 on the corresponding slot and all the other slots

have value 0. The query feature vector is illustrated in

fig.6 (the upper vector of fig.6).

Figure 6. SIMD multiplication of the query feature vector with class Ck.

The client encrypts the query feature vector (line 1),

and in order to enable the secProductOfBlocks algorithm

(Algorithm 1), he also constructs the inverse query

feature vector, which has the bits inverted (switched)

 KJAMILJI et al. – Secure Naïve Bayes classification without loss of accuracy … 401

from the original query, i.e. ones become zero and zeros

become ones. This is illustrated in fig.7 (lower vector of

fig.7). This is done by first encrypting a vector of all

ones (line 2), then subtracting it from the original vector

(line 3). The client sends the both of them to the server

(line 4).

Upon receiving both of the encrypted vectors, for

each of the c classes the Server multiplies the received

query with the class vector (line 6) as it is illustrated in

fig.6, then adds the inverseQFV to the previous result

(line 7), which is shown in fig.7. Afterwards, by calling

Algorithm 1 it finds the likelihood of the query to belong

to the corresponding class (line 8). We should note that

the size of the blocks here is n = ∑ |𝐹𝑖| + 1
𝑓
𝑖=1) slots, i.e.

one for all feature-values for all the features, and one for

the class probability. At this point the server has found

all of the c encrypted probabilitylikelihoods of the query

to belong to acertainclass.Together with the client they

engage in the argMax algorithm (Algorithm 3), at the

end of which the client has the final Classification of his

query (line 9). This was done by satisfying the privacy

preserving classification goals set in section 1, for both

the server and the client.

Figure 7. Adding the inverseQFV to the previous multiplication result.

We should also note that in order to increase the

throughput and performances by a large amount of

magnitude without any cost increase, we can pack

several (say up to q) queries at the client. In turn this

should be reciprocated by class packing at the server

(each of c plaintexts of the trained model has the same

class packed for q times) (fig.8). In this way Algorithm 4

is able to process q queries in one call.

Figure 8. Query and class packing to increase throughput without extra

cost.

EXPERIMENTAL RESULTS. COMPARISONS

In order to test the performance of our building blocks

and scheme, we use the Wisconsin breast cancer dataset

from the UCI repository [14]. It has 9 features (hence
f=9), and two classes – cancer and non-cancer (thus

c=2). All of the features can have values between 1 and

10 (hence |Fi|=10 for 1≤i ≤f). This means that for the

block size of one class (fig. 5) we have ∑ |𝐹𝑖| + 1
𝑓
𝑖=1)

=91 slots. For the purposes of Algorithm 1, we will

round it up the closest power of two, which is n=128 =

27. This means that for each class we need to have 128

slots to encode it to work in SIMD fashion.

Table 1. Accuracy of Algorithm 4.

 Pred. non-cancer Pred. cancer

True non-cancer 436 22

True cancer 6 235

For encryption purposes we use the Microsoft’s

SEAL library [15], which is based on the FV SWHE

scheme [11]. Due to circuit depth (noise issues, see [11-

15] for more details) for the polynomial size (modulus)

we tried the values of N=4096, 8192 and 16384. It was

shown that 25 bits were enough for the plain modulus tp

so not to have accuracy loss (table 1) due to the

integerization process (multiplying by K). The

coefficient modulus was chosen according to

standardized parameters to adjust for a 128-bit security

for all of the above polynomial sizes. We run the code on

a Windows 10 platform with an Intel i5 processor of

2.4GHz and 4 GB of RAM. The accuracy was 96%

(table 1) for both the privacy preserving and the plain

classifier.

Fig.9 gives the timing results for both the client and

the server. Y-axis represents the time in ms

(milliseconds), while the X-axis is the average time per

query throughput. Having in mind that a single class

needs n=128 slots, then for N=4096, 8192 and 16384 we

have a throughput of q=N/n = 32, 64 and 128 queries per

ciphertext, correspondingly.

Figure 9. Average time in ms (y-axis) per query processing when the

throughput is q = 32, 64, 128 queries per ciphertext (x-axis).

Table 2 provides some comparisons related to the

performance and security characteristics for the building

blocks of secure comparison and secure argmax among

several privacy preserving schemes.

0

10

20

30

40

50

60

32 64 128

Ti
m

e
 (

m
s)

 p
er

 q
u

e
ry

Throughput (q)-queries per ciphertext

Client Server

402 PROC. INTERNAT. CONF. SCI. ENGIN. 3: 397-403, April 2020

Table 2. Comparisons of secure comparison and argmax.

Scheme
Bost et. al.

[6]
Sun et. al. [7] Gao et. al. [8]

Liu et. al.

[9]
Liu et. al. [10]

Our

scheme

Sec.

comp

Nr. of

rounds
3 rounds 1 rounds 3 rounds 1 rounds 1 rounds 1 rounds

Leakage No Leakage No Leakage

The difference between

two number exposed if

protocol run several times

No

Leakage
No Leakage

No

Leakage

argmax

Nr. of

rounds

3 (c-1)

rounds
c-1 rounds

Does not cover multiclass

class.
c-1 rounds

Does not cover

multiclass class.
2 rounds

Leakage No Leakage No Leakage

Leaks the order (sequence)

of the numbers, but not

their values

No

Leakage
No Leakage

No

Leakage

Table 3. Results for cumulative classification per query.

PP Classification

Scheme
Bost et. al. [6] Sun et. al. [7] Gao et. al. [8] Liu et. al. [9] Liu et. al. [10] Our scheme

Computation 479 ms 48.79 ms 555 ms 348. 8 min. 196 sec. 14 ms

Communication 72.47 KB Not reported 19.3 KB 1.244 MB Not reported 109 KB

Table 3 gives the cumulative computation and

communication cost for both the client and the server

among several schemes. We should note that for

experimental purposes our scheme uses the same dataset

as [6], [9] and [10], while the other schemes use similar

datasets in terms of number of features and number of

values per feature set, which makes the schemes pretty

much comparable to each other.

SECURITY ANALYSIS

We base our security on the hardness of the RLWE

problem of our SWHE scheme, which also provides a

semantic security [11]. This semantic security will also

enable us to do the simulations for the real and simulated

world when proving the security in the semi-honest

model,for both our building blocksas well as our privacy

preserving classification scheme, in a similar fashion as

it is done in [6-10] and in almost all similar papers.

DISCUSSIONS AND CONCLUSION

In this paper we presented a few original secure building

blocks which can be incorporated to build any privacy

preserving algorithm. Utilizing them we constructed a

privacy preserving Naïve Bayes classifier. Our

experimental results, as well as theoretical analyses

showed that our building block and scheme

outperformed, many of the state-of-the-art ones in terms

of computation and communication cost. Furthermore,

our blocks and schemes showed to be more robust and

have better properties and security characteristics than

most of the others, but due to space concerns we omitted

them here. We plan to address them in an eventual

extension of this paper. For the upcoming research we

plan to address the issue of privacy preserving

classification for other algorithms such as deep learning,

SVM, decision trees, random forests, etc.We also

consider to extend this paper to address the issue of

privacy preserving training as well.

REFERENCES

[1] Reinsel, David, John Gantz, and John Rydning. "Data age

2025: The evolution of data to life-critical." Don’t Focus on

Big Data (2017).

[2] Shokri, Reza, and VitalyShmatikov. "Privacy-preserving deep

learning." Proceedings of the 22nd ACM SIGSAC conference

on computer and communications security. ACM, 2015

[3] Agrawal, Rakesh, and RamakrishnanSrikant. Privacy-

preserving data mining. Vol. 29. No. 2. ACM, 2000.

[4] Lindell, Yehuda, and Benny Pinkas. "Privacy preserving data

mining." Annual International Cryptology Conference.

Springer, Berlin, Heidelberg, 2000.

[5] Gilad-Bachrach, Ran, Nathan Dowlin, Kim Laine, Kristin

Lauter, Michael Naehrig, and John Wernsing. "Cryptonets:

Applying neural networks to encrypted data with high

throughput and accuracy." In International Conference on

Machine Learning, pp. 201-210. 2016

[6] Bost, Raphael, Raluca Ada Popa, Stephen Tu, and

ShafiGoldwasser. "Machine learning classification over

encrypted data." In NDSS. 2015

[7] Sun, Xiaoqiang, et al. "Private machine learning classification

based on fully homomorphic encryption." IEEE Transactions

on Emerging Topics in Computing (2018).

[8] Gao, Chong-zhi, et al. "Privacy-preserving Naive Bayes

classifiers secure against the substitution-then-comparison

attack." Information Sciences 444 (2018): 72-88.

[9] Liu, Ximeng, Robert Deng, Kim-Kwang Raymond Choo, and

Yang Yang. "Privacy-Preserving Outsourced Clinical

 KJAMILJI et al. – Secure Naïve Bayes classification without loss of accuracy … 403

Decision Support System in the Cloud." IEEE Transactions on

Services Computing (2017).

[10] Liu, Ximeng, Rongxing Lu, Jianfeng Ma, Le Chen, and

Baodong Qin. "Privacy-preserving patient-centric clinical

decision support system on naive Bayesian classification."

IEEE journal of biomedical and health informatics 20, no. 2

(2016): 655-668

[11] Fan, Junfeng, and Frederik Vercauteren. "Somewhat Practical

Fully Homomorphic Encryption." IACR Cryptology ePrint

Archive 2012 (2012): 144.

[12] Smart, Nigel P., and Frederik Vercauteren. "Fully

homomorphic SIMD operations." Designs, codes and

cryptography 71, no. 1 (2014): 57-81.

[13] Park, Heejin, Pyung Kim, Heeyoul Kim, Ki-Woong Park, and

Younho Lee. "Efficient machine learning over encrypted data

with non-interactive communication." Computer Standards &

Interfaces 58 (2018): 87-108.

[14]

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wiscon

sin+(Diagnostic)

[15] https://github.com/microsoft/SEAL

THIS PAGE INTENTIONALLY LEFT BLANK

