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Abstract. The classification and prediction accuracy of Machine Learning (ML) algorithms, which often outperform human experts of the 

related field, have enabled them to be used in areas such as health and disease prediction, image and speech recognition, cyber-security 

threats and credit-card fraud detection and others. However, laws, ethics and privacy concerns prevent ML algorithms to be used in many 

real-case scenarios. In order to overcome this problem, we introduce a few flexible and secure building blocks which can be used to build 

different privacy preserving classifications schemes based on already trained ML models. Then, as a use-case scenario, we utilize and 

practically use those blocks to enable a privacy preserving Naïve Bayes classifier in the semi-honest model with application to breast 

cancer detection. Our theoretical analysis and experimental results show that the proposed scheme in many aspects is more efficient in 

terms of computation and communication cost, as well as in terms of security properties than several state of the art schemes. 

Furthermore, our privacy preserving scheme shows no loss of accuracy compared to the plain classifier.  
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INTRODUCTION 
 

Many modern technologies, such as cloud computing, 

wearable and ubiquitous computing, Internet of Things 

(IoT) and others, have enabled us to collect huge amount 

of data and come to what is now known as Big Data, 

were annually it is expected to be generated 44 

zettabytes of data only throughout 2020 alone [1]. This 

data hides in itself important patterns and information 

that the human brain cannot comprehend. Nevertheless, 

rapid advancements of the computational power of 

modern processors and computer systems, combined 

with the increasing network speeds, have enabled us to 

take benefit of those deeply hidden patterns and throve 

of information. Especially we see this benefit when we 

use this data for the purpose of training (building) 

Machine Learning (ML) models (algorithms), which in 

their prediction often surpass human experts of the 

corresponding field [2]. Those algorithms include deep 

learning (neural networks), support vector machines 

(SVM), Naïve Bayes, decision trees, random forests, etc. 

However, there is a drawback. Due to law and privacy 

requirements, no entity would be comfortable to publicly 

share their data for the purpose of training ML models. 

Rather, they would like to do it in what is called as 

privacy preserving training where, roughly, those 

entities use privacy-preserving techniques to train ML 
models which enables them to hide their data during the 

training process. On the other hand, after we have 

obtained the trained model, we face the same privacy 

concerns during the prediction phase. Namely, the user 

(client) that has unclassified data doesn’t want to reveal 

this data neither the final prediction (classification) to the 

server that holds the trained model, while the server 

doesn’t want to reveal any parameter of the trained 

model to the user. This process is called privacy 

preserving classification (prediction). 

Nearly a couple of decades ago, [3-4] almost at the 

same time came with the notion of privacy preserving. 

Throughout the years many schemes have been proposed 

that deal with either privacy preserving training or 

classification or both for various machine learning 

algorithms. Some of them include privacy preserving 

deep learning [2,5], decision trees [6-8], hyperplane 

systems and SVM [6-8], Naïve Bayes [6-10] and others. 

In this paper we deal only with privacy preserving Naïve 

Bayes classifiers and leave for the follow-up papers the 

rest of ML algorithms. Due to space constraints here we 

will exclusively address the issue of privacy preserving 

classification based on the Naïve Bayes algorithm and 

leave open the issue of privacy-preserving training with 

multiple dataset owners involved for an extension of this 

paper.  

 

 

PRELEMINARIES AND PARTICIPANTS 

 

Naïve Bayes classifier 
Let’s say that each of the dataset’s records (transactions, 

rows, instances) have f features. Each of those feature 

sets can have certain values, i.e. Fi = {V1,Fi, V2,Fi ,…,V|Fi|, 

Fi}, where |Fi| is the cardinality (number of elements) of 
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set Fi and vj,Fi is it’s j-th element of set Fi, with 1 ≤ i ≤ f 

and  1≤j≤|Fi|. Hence each of the dataset record belongs 

to theset of features F⊆ 𝑅𝑓 which is a Cartesian product 

of the features, hence F={F1xF2x …xFf}.All of the 

instances are labeled (belong to) one of the c classes 

from the set of classes C={C1, C2, … Cc}. In total we 

have NT transactions (records) in the dataset. We denote 

with 𝑁(𝐶𝑘)the frequency (number) of transactions that 

belong to class Ck and with 𝑁(𝑉𝑗,𝐹𝑖; 𝐶𝑘) the frequency of 

transactions that has label Ck for the j-th value of the 

feature Fi. Correspondingly, we denote the class 

probabilities as 𝑃(𝐶𝑘) =
𝑁(𝐶𝑘)

𝑁𝑇
and the conditional value-

class probabilities as 𝑃(𝑉𝑗,𝐹𝑖|𝐶𝑘) =
𝑁(𝑉𝑗,𝐹𝑖;𝐶𝑘)

𝑁(𝐶𝑘)
, where 1≤i 

≤ f, 1 ≤ j ≤ |Fi| and 1 ≤ k ≤ c. Those probabilities actually 

represent the Naïve Bayes trained model. 

For an unclassified (un-labeled) query vector X={X1, 

X2, … Xf}, where 𝑋 ∈ 𝐹 (hence 𝑋𝑖  ∈ 𝐹𝑖, for 1 ≤ i ≤ f), 

we denote as C(X) the process of assigning a label 

(classifying) this query according to the maximum 

likelihood 𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑗≤c𝑃(𝐶𝑗|𝑋). Using the 

Naïve Bayes formula:  

 

𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑘≤c

𝑃(𝐶𝑘)𝑃(𝑥1, … 𝑥𝑓|𝐶𝑘)

𝑃(𝑥1,…𝑥𝑓)
 (1) 

 

since the term 𝑃(𝑥1, … 𝑥𝑓) is the same for all classes, 

then naively assuming that all of the features are 

independent between each-other, hence 

𝑃(𝑥1, … 𝑥𝑓|𝐶𝑘) = ∏ 𝑃(𝑋𝑖|𝐶𝑘)
𝑓
𝑖=1 , then (1) can be re-

written as: 

 

𝐶(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑘≤c𝑃(𝐶𝑘) ∏ 𝑃(𝑋𝑖|𝐶𝑘)
𝑓
𝑖=1  (2) 

 

Despite its’ naïve assumptions, yet Naïve Bayes is 

among most widely used ML classifiers due to its’ 

simplicity and high prediction accuracy [9-10].    

 

Public Somewhat homomorphic encryption 
Public encryption schemes allow asymmetric encryption 

techniques were there is a pair of two keys for 

encryption/decryption, one is public and the other one is 

kept secret. If a certain message is encrypted with one 

key, it can be decrypted with the other one. Public 

somewhat homomorphic encryption (SWHE) schemes 

allow certain operations (such as additions and 

multiplications) to be done on the ciphertexts without 

decrypting them, which are known as homomorphic 

operations.Most SWHE schemes work with integers. In 

this sense, we denote by [.] an encryption of an integer 

message using a SWHE scheme, hence 

[ctxt]=Encrypt(m), where Encrypt(.) is the encryption 

function and m is a plaintext message. Hence for the 

homomorphic operations we have [ctxt3]=[ctxt1]+[ctxt2], 

and [ctxt4]=[ctxt1]x[ctxt2]. SWHE schemes also allow 

for operations between plaintexts and ciphertexts, i.e. 

[ctxt5]=ptxt+[ctxt1] and [ctxt6]=ptxt+[ctxt1]. The number 

of multiplications though is limited and it’s known as the 

circuit depth of the scheme. The decryption function is 

denoted Decrypt(.), thus m = Decrypt([ctxt]). SWHE 

schemes are mostly based on hard problems on lattices, 

such as Ring Learning with Error (RLWE) [11]. Using 

the Chinese Remainder Theorem (CRT), Smart et.al [12] 

enabled a Single Instruction Multiple Data (SIMD) 

fashion of homomorphically executing the operations 

over encrypted data (fig.1). This opened the way for 

huge computation improvements by executing the 

homomorphic operations in parallel in component (slot-

wise) manner, with no extra cost(fig.1). This is 

especially helpful for ML algorithms, which often do 

several operations that are similar (of same nature) with 

each-other, so they can be done in SIMD fashion. 

Integers are encoded on polynomial rings of size N, 

where the plaintexts have coefficients modulo tp and 

ciphertexts modulo qc. CRT encoded ciphertexts also 

allow for rotation of slots, which will be denoted as <<R 

or >>R in the figures, where R is a random integer that 

shows by how much the slots will be rotated, while the 

arrows show the direction of the rotation. For the 

pseudocodeswe will use the function Rotate([ctxt], R) 

which returns a rotation to the right (>>) for R slots of 

the ciphertext [ctxt], andIf R is a negative integer then 

the rotation is done for R slots to the left. If not stated 

otherwise, throughout the paper we assume that all of the 

encryptions are done by firstly encoding the plaintext 

messages to workin SIMD fashion and then encrypt 

them with a SWHE public scheme. 

 

 

 
 

Figure 1. Illustration of SIMD regime of homomorphic operations. 

 

System participants and their model 

In our system we have 2 participant (entities): a server 

that has an already trained Naïve Bayes based model, 

and a client (user) that has an un-classified query (data) 

that he wishes to classify in privacy preserving fashion 

using the server’s trained model (fig.1). This means that 

while being engaged in the privacy preserving protocol, 

the user hides both the un-classified query, the final 

prediction or any intermediate result from the server, 

while the server hides from the client all theparameters 

related to the trained model. We also assume that both 

the client and server are from the semi-honest (honest-

but-curious) model, which means that they follow the 

protocol but on the background (while running the 

protocol) they try to infer some data which they are not 
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supposed to do. Motivations for parties to be from the 

semi-honest model and hence follow the protocol are 

given in [9-10]. 

 

 
 

Figure 2. Participants (a server and a client) in the semi-honest model 

 

 

BUILDING BLOCKS 

 

In this section we will give some adoptable and flexible 

secure building blocks, which in turn can be used to 

build more complex algorithms in privacy preserving 

fashion 

 

 
 

Figure 3. Illustration of the secProdOfBlocks algorithm. 

 

Secure product of blocks of n slots 
Allows to securely find the product of a block of n slots 

in a SIMD encoded ciphertext. Its illustration is given in 

fig.3, while its pseudocode is shown in algorithm 1. 

 

ALGORITHM 1: secProductOfBlocks 

INPUT: [inputCipher], n 

n: size of the block of slots, starting from slot 0 

OUTPUT: [result] 
[result]: contains the product of each block of n slots at 

the beginning (first slot) of the corresponding block    

1   [result] = [inputCipher] 

2   for i = 1 to log2(n) 

3         [result] = [result] x Rotate([result], -2i) // fig.3 

4   return [result] 

 

 

 

Secure SIMD Comparison 
It’s a secure two party computation, where Party 1 has 

two encrypted ciphertexts [A] and [B] (not necessarily 

encrypted to enable SIMD), while Party 2 has the secret 

(decryption) key. In the end Party 2 learn which one is 

greater, but not by how much. Party 1 learns nothing. 

The SIMD version of the secure comparison algorithm is 

illustrated in fig.4., while the pseudocode is given in 

algorithm 2. 

 

ALGORITHM 2: secComp 

INPUT:  

Party 1:[A], [B]– integers encrypted by Party 1’s pub. 

key Pk 

Party 2: secret key (sk) which can decrypt the 

ciphertexts 

OUTPUT: result 

result: If result ≥ 0 then A ≥ B, otherwise A< B 

Party 1: 

1   [C] = ([A] - [B]) x R // R > 0, fig.4 

2   send [C] to Party 2 

Party 2: 

3result = Decrypt([C]) 

 

 
 

Fig.4. SIMD version secure comparison. 

 

Secure argmax over encrypted data 

In this scenario Party 1 has an array of c encrypted 

integers using the public key of Party 2. They are not 

necessarily encrypted to enable SIMD. Party 2 has the 

secret (decryption) key. In the end Party 2 learns only 

the index of the maximum integer of the array and 

nothing else (neither by how much the numbers in the 

array differ nor their relative order in term of which one 

is greater). Party 2 learns nothing. Algorithm 3 gives the 

pseudocode for the secure argmax protocol. 

ALGORITHM 3: secArgmax 

INPUT:  
Party 1: [arr[]] -  array of c integers, encrypted by P1’s 

Pk   

Party 2: secret key (sk) which can decrypt the 

ciphertexts 

OUTPUT:maxIndex 
maxIndex: the index of the maximum integer in array[] 

Party 1: 

1  permute the array using random permutation π(arr[]) 

2  compute all comparisons = {π(arr[xi])- π(arr[xj])}Rij 
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//for i = 1, …c and j=i+1, …n; Rijis a random integer 

3  send comparisons toParty 2 

Party 2: 

4receive the c(c-1)/2 comparisons combinations.  

decrypt them.Find the maximum one and send {σ1, … 

σc} 

to Party2, where σi=[0] if π(array[xi]≠max, otherwise σi 

= [1] 

5 send all σi in order (starting from σ1 to σn) to Party 1 

Party 1: 

6compute 𝑣 = ∑ π−1(𝑖) ∙𝑖 𝜎𝑖 and send v to A  

//π-1(i) are the indices of the inverse permutation, not 

integers 

7 send 𝑣 to Party 2 

Party 2: 

8 maxIndex=Decrypt(𝑣)  //index of the max. integer of 

arr[] 

 

Basically, in line 1 Party 1 permutes the array with a 

random permutation π, and in line 2 for each pair it does 

the secure comparison technique (as its described in 

algorithm 2) and sends all of the comparison to Party 2 

(line 3). Party 2decrypt the results for all the pair 

comparisons (line 4), and having in mind the logic of 

algorithm 2 it finds the index of the maximum integer 

(the one for which all the comparisons yielded a result 

greater than zero) of the permuted array. Then it encrypts 

n integers such thatσi = [1] if i is the index of the 

maximum integer of the permuted array, otherwise σi = 

[0], for i=1, … c (line 4) and sends them to Party 1 again 

(line 5). Party A finds the encryption of the maxIndex of 

the original array arr[] by homomorphically executing 

𝑣 = ∑ π−1(𝑖) ∙𝑖 𝜎𝑖, where π-1(i) is the index value of the 

inverse permutation of π (line 6) and sends this 𝑣 to 

Party 2 (line 7).Finally, Party 2 decrypts v to find the 

index of the integer with the biggest value in the original 

array arr[] (line 8).  

 

 

 

SECURE NAÏVE BAYES CLASSIFICATION 

 
Algorithm 4 gives the pseudocode for the privacy 

preserving Naïve Bayes classification. As an input the 

server has the trained model which includes all the class 

and the conditional value-class probabilities. The trained 

model consists of c plaintexts (one for each class) 

encoded to enable plain SIMD operations on them. Each 

of the classes’ plaintext at the first slot has the 

probability of that class, followed by the class-value 

conditional probabilities of all values among all features 

in an ordered sequence (i.e. starting with the conditional 

probability of the first value of F1with the class, then 

second value, and so on till the end). The same goes for 

other features. SotrainedModel =

{𝑃(𝐶𝑘), 𝑃(𝑉1,𝐹1|𝐶𝑘), 𝑃(𝑉2,𝐹1|𝐶𝑗), … 𝑁(𝑉|𝐹𝑓|,𝐹𝑓|𝐶𝑘)}
𝑘=1

𝑐
. 

 

ALGORITHM 4: PPNaiveBayesClassification 

INPUT:  

Server: trainedModel = {class_C1, class_Ck} //fig.4 

Client: secret key (sk), query feature vector 

OUTPUT:finalClassification 
finalClassific.: the predicted label of class C={C1, C2, 

… Cc}. 

Client: 

1 [queryFV] = Encrypt(query) 

2 [mask] = Encrypt({1, 1, …, 1}) 

3 [inverseQFV] = [mask] - [queryFV]  

4 send [queryFV] and [inverseQVF] to Server 

Server: 

5 for k = 1 to c 

6        [res] = [queryFV] x class_Ck  // fig.6 

7        [res] = [res] + [inverseQVF]   // fig.7 

8        [Prob[k]] = secProductOfBlocks([res], ∑ |𝐹𝑖| +
𝑓
𝑖=1

1)  

Server (as Party 1) and Client (as Party 2): 

9 finalClassification= secArgmax (Prob[ ]) 

 

This is illustrated in fig.5. Since SWHE schemes 

don’t work with real numbers, all of the probabilities are 

multiplied by a constant K and rounded to the closest 

integer number. For the Naïve Bayes case it has been 

shown that it is sufficient for this K to be between 8-10 

bits so to have the same accuracy as the plain (non-

privacy preserving) classifier [13]. 

 

 
 

Figure 5. SIMD encoding of the probabilities related to class Ck. 

 

On the other hand, besides the secret key, as an input 

the client also has the un-classified “query feature 

vector” that he wishes to classify. It is constructed as a 

single ciphertext that has one slots for each of the values 

of all of the features arranged in ordered sequence. If a 

certain value of a certain feature is part of the query we 

put 1 on the corresponding slot and all the other slots 

have value 0. The query feature vector is illustrated in 

fig.6 (the upper vector of fig.6). 

 

 
 

Figure 6. SIMD multiplication of the query feature vector with class Ck. 

 
The client encrypts the query feature vector (line 1), 

and in order to enable the secProductOfBlocks algorithm 

(Algorithm 1), he also constructs the inverse query 

feature vector, which has the bits inverted (switched) 
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from the original query, i.e. ones become zero and zeros 

become ones. This is illustrated in fig.7 (lower vector of 

fig.7). This is done by first encrypting a vector of all 

ones (line 2), then subtracting it from the original vector 

(line 3). The client sends the both of them to the server 

(line 4). 

Upon receiving both of the encrypted vectors, for 

each of the c classes the Server multiplies the received 

query with the class vector (line 6) as it is illustrated in 

fig.6, then adds the inverseQFV to the previous result 

(line 7), which is shown in fig.7. Afterwards, by calling 

Algorithm 1 it finds the likelihood of the query to belong 

to the corresponding class (line 8). We should note that 

the size of the blocks here is n = ∑ |𝐹𝑖| + 1
𝑓
𝑖=1 ) slots, i.e. 

one for all feature-values for all the features, and one for 

the class probability. At this point the server has found 

all of the c encrypted probabilitylikelihoods of the query 

to belong to acertainclass.Together with the client they 

engage in the argMax algorithm (Algorithm 3), at the 

end of which the client has the final Classification of his 

query (line 9). This was done by satisfying the privacy 

preserving classification goals set in section 1, for both 

the server and the client. 

 

 
 

Figure 7. Adding the inverseQFV to the previous multiplication result. 

 

We should also note that in order to increase the 

throughput and performances by a large amount of 

magnitude without any cost increase, we can pack 

several (say up to q) queries at the client. In turn this 

should be reciprocated by class packing at the server 

(each of c plaintexts of the trained model has the same 

class packed for q times) (fig.8). In this way Algorithm 4 

is able to process q queries in one call. 

 

 
Figure 8. Query and class packing to increase throughput without extra 

cost. 

 

 

EXPERIMENTAL RESULTS. COMPARISONS 

 

In order to test the performance of our building blocks 

and scheme, we use the Wisconsin breast cancer dataset 

from the UCI repository [14]. It has 9 features (hence 
f=9), and two classes – cancer and non-cancer (thus 

c=2). All of the features can have values between 1 and 

10 (hence |Fi|=10 for 1≤i ≤f). This means that for the 

block size of one class (fig. 5) we have ∑ |𝐹𝑖| + 1
𝑓
𝑖=1 ) 

=91 slots. For the purposes of Algorithm 1, we will 

round it up the closest power of two, which is n=128 = 

27. This means that for each class we need to have 128 

slots to encode it to work in SIMD fashion. 

 
Table 1. Accuracy of Algorithm 4. 
 

 Pred. non-cancer Pred. cancer 

True non-cancer 436 22 

True cancer 6 235 

 

For encryption purposes we use the Microsoft’s 

SEAL library [15], which is based on the FV SWHE 

scheme [11]. Due to circuit depth (noise issues, see [11-

15] for more details) for the polynomial size (modulus) 

we tried the values of N=4096, 8192 and 16384. It was 

shown that 25 bits were enough for the plain modulus tp 

so not to have accuracy loss (table 1) due to the 

integerization process (multiplying by K). The 

coefficient modulus was chosen according to 

standardized parameters to adjust for a 128-bit security 

for all of the above polynomial sizes. We run the code on 

a Windows 10 platform with an Intel i5 processor of 

2.4GHz and 4 GB of RAM. The accuracy was 96% 

(table 1) for both the privacy preserving and the plain 

classifier. 

Fig.9 gives the timing results for both the client and 

the server. Y-axis represents the time in ms 

(milliseconds), while the X-axis is the average time per 

query throughput. Having in mind that a single class 

needs n=128 slots, then for N=4096, 8192 and 16384 we 

have a throughput of q=N/n = 32, 64 and 128 queries per 

ciphertext, correspondingly. 

 

 
Figure 9. Average time in ms (y-axis) per query processing when the 

throughput is q = 32, 64, 128 queries per ciphertext (x-axis). 

 

Table 2 provides some comparisons related to the 

performance and security characteristics for the building 

blocks of secure comparison and secure argmax among 

several privacy preserving schemes. 
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Table 2. Comparisons of secure comparison and argmax. 
 

Scheme 
Bost et. al. 

[6] 
Sun et. al. [7] Gao et. al. [8] 

Liu et. al. 

[9] 
Liu et. al. [10] 

Our 

scheme 

Sec. 

comp 

Nr. of 

rounds 
3 rounds 1 rounds 3 rounds 1 rounds 1 rounds 1 rounds 

Leakage No Leakage No Leakage 

The difference between 

two number exposed if 

protocol run several times 

No 

Leakage 
No Leakage 

No 

Leakage 

argmax 

Nr. of 

rounds 

3 (c-1) 

rounds 
c-1 rounds 

Does not cover  multiclass 

class. 
c-1 rounds 

Does not cover 

multiclass class. 
2 rounds 

Leakage No Leakage No Leakage 

Leaks the order (sequence) 

of the numbers, but not 

their values 

No 

Leakage 
No Leakage 

No 

Leakage 

 
Table 3. Results for cumulative classification per query. 

 

PP Classification 

Scheme 
Bost et. al. [6] Sun et. al. [7] Gao et. al. [8] Liu et. al. [9] Liu et. al. [10] Our scheme 

Computation 479 ms 48.79 ms 555 ms 348. 8 min. 196 sec. 14 ms 

Communication 72.47 KB Not reported 19.3 KB 1.244 MB Not reported 109 KB 

 

 

 

Table 3 gives the cumulative computation and 

communication cost for both the client and the server 

among several schemes. We should note that for 

experimental purposes our scheme uses the same dataset 

as [6], [9] and [10], while the other schemes use similar 

datasets in terms of number of features and number of 

values per feature set, which makes the schemes pretty 

much comparable to each other. 

 

 

SECURITY ANALYSIS 

 

We base our security on the hardness of the RLWE 

problem of our SWHE scheme, which also provides a 

semantic security [11]. This semantic security will also 

enable us to do the simulations for the real and simulated 

world when proving the security in the semi-honest 

model,for both our building blocksas well as our privacy 

preserving classification scheme, in a similar fashion as 

it is done in [6-10] and in almost all similar papers. 

 

 

DISCUSSIONS AND CONCLUSION 

 

In this paper we presented a few original secure building 

blocks which can be incorporated to build any privacy 

preserving algorithm. Utilizing them we constructed a 

privacy preserving Naïve Bayes classifier. Our 

experimental results, as well as theoretical analyses 

showed that our building block and scheme 

outperformed, many of the state-of-the-art ones in terms 

of computation and communication cost. Furthermore, 

our blocks and schemes showed to be more robust and 

have better properties and security characteristics than 

most of the others, but due to space concerns we omitted 

them here. We plan to address them in an eventual 

extension of this paper. For the upcoming research we 

plan to address the issue of privacy preserving 

classification for other algorithms such as deep learning, 

SVM, decision trees, random forests, etc.We also 

consider to extend this paper to address the issue of 

privacy preserving training as well.  
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