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Abstract— To handle the information exchange problem between a vendor and a retailer, Vendor Managed Inventory (VMI) provides a 

good approach to handle the problem. Information exchanges between both sides enhance supply chain performance. In a previous 

research work, a stochastic model for one vendor and one retailer has been developed. Simulation optimization using genetic algorithm 

(GA) has been use to solve the problem. There are 2 important parameters in genetic algorithm (probability of mutation and probability 

of crossover). This research aims at analyzing relations between GA parameters and optimal solutions. This research compares many 

combinations of GA parameters and the effects on optimal solutions and time to reach the optimal solutions. This research concludes that 

the best combination reaches the optimal solutions. Unfortunately, the best combination is only suitable for a certain condition and 

increasing/reducing GA parameters values do not automatically improve the optimal solutions. 
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I.  INTRODUCTION 

There are many problems in a supply chain system. One of 

the basic problems in the supply chain system is lack of 

information exchanges between a retailer and a vendor. In a 

traditional inventory system, a retailer places an order based on 

his own interest. The vendor will fulfill the retailer order by 

delivering the product. Supply chain members have their own 

inventory control policies and they do not share their inventory 

information.  

On modern supply chain networks, VMI has become an 

interesting topic in the management of the inventory system. 

VMI is different to the traditional inventory systems. In VMI, 

replenishment decision is delegate to the vendor. The vendor, 

therefore, monitors the retailer’s inventory level and makes 

corresponding replenishment decisions. Applying VMI, the 

vendor will know the real demand and he does not rely on the 

retailer order, which may not be the real demand, and hence, 

bullwhip effect can be avoid. VMI has become an interesting 

topic in supply chain management since Wal-Mart and Procter 

& Gamble successfully implemented VMI in the late 1980s. 

VMI application helps reduce costs and improves service level 

[12]. 

Some research works have been done related to VMI 

environment. Research works on VMI have grown from one 

vendor-one retailer system into one vendor - multiple retailer 

system. Deterministic and stochastic demands have been 

considered in various VMI research works. Related to VMI 

models with one vendor and one retailer system, there are some 

research works focused on this area [1], [16], [11], [17], [8], [2], 

[7]. On the other hand, various VMI models with one vendor 

and one retailer system under stochastic demand have been 

developed by [4],[13],[15],[3],[6], and [10]. 

A VMI model using (t, q) policy has been developed by 

[10]. The research paper employed simulation-optimization 

technique using genetic algorithm to find optimal solutions. 

They use genetic algorithm parameters, which are 

recommended by the software. In fact, genetic algorithm 

parameter optimal settings follow model characteristics. 

Therefore, this research analyzes effects of genetic algorithm 

parameters on optimal solutions and time to reach the optimal 

solutions. 

II. LITERATURE REVIEW 

In the traditional inventory systems, a retailer places an 

order to his vendor based on his own interest. The vendor will 

fulfill the retailer order by delivering the product. In VMI, 

replenishment decision is delegated to the vendor. The vendor, 

therefore, monitors the retailer’s inventory level and makes 

corresponding replenishment decisions.  

Related to the research works with one vendor and one 

retailer system under deterministic demand, some research 

findings have been made. Profits after VMI implementation are 

always higher than the ones before VMI  [1]. How profits 

distributed among a supplier and a buyer in a supply chain 

system was examined by [16]. By taking into consideration 

shipment cost in inventory costs [11] criticized [16]. In another 

direction, a multi-product EOQ model in which (𝑅, 𝑄) policy 

was employed and the model was solved by Genetic algorithm 

to find optimal solutions [8]. An integrated single product 

inventory model and shelf space arrangement under VMI and 

consignment stock has been developed by [2]. Related to green 

supply chain, integration of VMI policy and green supply chain 

aspects was proposed by [7] 

Related to VMI research works for one vendor and one 

retailer system under stochastic demand, some research 

findings have been done. A VMI model, where Company A 

used (𝑟, 𝑄) policy to replenish the materials to company B and 

Company B produced Company A’s order after a number of 

orders, has been developed by [4]. A Markov decision model 

was developed in this research. A VMI model for one vendor 

and one retailer with a third-party logistics service provider has 

been developed by [14]. Response Surface Methodology  and 

particle swarm optimization was employed to find the optimal 

solutions through simulation. A VMI contract with 

consignment stock was designed by [5]. 

A VMI model for one vendor and one retailer using (t,q)  

policy was developed by [10]. Due to the complexity of the 

problem, simulation optimization using genetic algorithm (GA) 

was used to find the optimal solutions. They used GA 

parameters which were recommended by the software builder. 

In fact, the most suitable GA parameters follow model 

characterizations. This research, therefore, analyze the effects 

of GA parameter on optimal solutions and the time to reach the 

optimal solutions. 

III. METHODOLOGY 

This research analyzes the relation between genetic 

algorithm parameters and objective function value and the time 

to reach the optimal solutions. Some experiments have been 

conducted. This research uses the model which has been 

developed by [10]. The model aims at minimizing the total 

system cost. The total cost consists of vendor order cost, vendor 

holding cost, delivery cost, retailer holding cost and lost sales 

cost. 

Data is collected using @RiskOptimizer software. The 

research steps are as follows.  

1. Determining the genetic algorithm parameters 

The objective of this research is to analyze the effects of 

GA parameter on optimal solutions of the model. There are four 

GA main parameters [9]:  

1. Probability of crossover (Crossover rate) 

2. Probability of mutation (Mutation rate) 

3. Population size 

4. Number of generations  

Only two GA parameters will be analyzed in this research. 

The parameters are the probability of crossover (Pc) and the 

probability of mutation (Pm). 

2. Determining values of each parameter 

This research combines some values of probability of 

crossover  (Pc) and probability of mutation (pm). The values for 
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probability of crossover are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 

and 0.9. The same values are used for the probability of 

mutation. So, this research has 81 sets of experiments for each 

scenario. 

3. Conducting research experiments 

In this research, Factorial experiment method is employed 

as recommended by [9].  The method is used to identify the best 

GA parameter values in order to find the optimal solutions.  

4. Research results analysis and Concluding research results 

In this research, effects of GA parameters on optimal 

solutions are studied. The value of optimal solutions and the 

time to reach optimal solutions are discussed in this paper. 

IV. VMI MODEL REVIEW 

In this research, A VMI model, which was developed by 

[10], is employed. This section will describe the model. The 

model aims at minimizing the expected of total system cost. 

Simulation-optimization using genetic algorithm is employed to 

find the decision variables. The following notations will be use 

throughout this paper: 

𝑄 vendor’s order lot size 

𝑞 retailer’s lot size 

𝑇 vendor cycle time 

𝑡 retailer cycle time 

𝑛 number of replenishments in a vendor cycle 

AVO average vendor order cost per time unit 

VOC vendor order cost per order 

CVH unit holding cost at the vendor site  

($/unit/unit time) 

ATV average vendor holding cost per time unit 

𝐷𝑐  delivery cost per time unit 

𝐶𝑑 delivery cost per delivery 

𝐵𝐼𝑃𝑖  retailer beginning inventory position for cycle i 

𝐸𝐼𝑃𝑖  retailer ending inventory position for cycle i 

𝐷𝑖  customer demand for cycle i 

𝑅𝐻𝐶𝑖  the retailer holding cost per unit time in cycle i 

𝑡1 time when the inventory position equals to 0 

𝐻𝑅 unit holding cost at retailer site ($/unit/unit time) 

ERHC expected retailer holding cost per unit time 

𝑅𝐿𝐶𝑖 retailer lost sales cost for cycle i 

𝐿𝑆 unit cost of lost sales ($/unit) 

ERLC expected retailer lost sales cost per unit time 

D average retailer demand per unit of time 

SUi shortage amount for cycle i 

The VMI system behavior is describe as follows. 

1. The system starts with a vendor placing order to his 

external supplier with ample capacity. The vendor’s order 

lot size is 𝑄 units.  

2. The vendor delivers q units of product every 𝑡 units of time 

to the retailer. The replenishment cycle time of the retailer 

(𝑡) is fixed. 

3. During a vendor cycle time (𝑇), there is n replenishments. 

Consequently, 𝑇 equals to the number of replenishments in 

a vendor cycle multiplied by the length of a retailer cycle 

(𝑡). 

The relations of the retailer’s cycle time, the vendor’s cycle 

time, the retailer’s lot size, the vendor’ lot size and number of 

replenishment in a vendor cycle are shown on Formulas 1 and 

2 as follows. 

𝑇 = 𝑛 ∗ 𝑡 (1) 

𝑄 = 𝑛 ∗ 𝑞 (2) 

It is noted that, customer demand at the retailer is 

stochastic. The retailer inventory position will be reduced 

gradually due to stochastic demand. This VMI model is 

developed for a single non-deteriorating product. Demand 

observed by the retailer is assumed to follow Poisson 

distribution. The model is assumed that delivery lead time from 

vendor to retailer is negligible. The inventory policy considers 

shortage as lost sales. There is a lost sales cost which is incurred 

to the system when shortages occur. 

The total system cost is the sum of the vendor costs and the 

retailer costs. The vendor costs consist of vendor order cost, 

vendor holding cost and delivery cost. On the other hand, the 

retailer costs consist of holding cost and lost sales cost. It is 

noted that all system costs are paid by the vendor. 

Vendor order cost is incurred one time in a vendor cycle. 

The average vendor order cost per time unit (𝐴𝑉𝑂) is calculated 

as vendor order cost (𝑉𝑂𝐶) divided by the length of a vendor 

cycle (𝑇) as shown by Formula 3. 

𝐴𝑉𝑂 =
𝑉𝑂𝐶

𝑇
=

𝑉𝑂𝐶

𝑛 ∗ 𝑡
 

(3) 

 

The vendor inventory position is reduced due to the 

delivery of product from the vendor to the retailer. An 

illustration of vendor inventory position is presented in the Fig. 

1 for the case when the number of replenishments equals to 

three. 
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Figure 1.  Vendor Inventory Position 

 

The total vendor holding cost in a vendor cycle (TV ) is 

calculated by using Formula 4 as follows. 
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TV = CVH ∗ t ∗ q ∗ n ∗ (
(n − 1)

2
) 

(4) 

 

From the above expression, the average total vendor 

holding cost per time unit (ATV) can be determined by using 

Formula 5 as follows. 

ATV =
TV

T
=

CVH ∗ t ∗ q ∗ n ∗ (
(n − 1)

2
)

n ∗ t

=
CVH ∗ q

2
(n − 1) 

(5) 

 

Delivery cost is incurred one time per delivery. So the 

delivery cost per time unit (𝐷𝑐) will be delivery cost per delivery 

(𝐶𝑑) divided by retailer cycle time (t) as shown by Formula 6. 

𝐷𝑐 =
𝐶𝑑

𝑡
 

(6) 

 

For retailer costs calculation, the simulation model 

developed will observe some data.  

1. Retailer beginning inventory position for cycle i (𝐵𝐼𝑃𝑖 ). 

𝐵𝐼𝑃𝑖  is defined as the retailer inventory position right after 

a replenishment in cycle i. 

2. Retailer ending inventory position for cycle i (𝐸𝐼𝑃𝑖). 𝐸𝐼𝑃𝑖  

is defined as the retailer inventory position right before a 

replenishment in cycle i. 

3. Customer demand for cycle i ( 𝐷𝑖 ). 𝐷𝑖  is defined as a 

stochastic demand and its value will be generated through 

simulation process. 

 

The model is simulated 40 cycles of retailer. The following 

procedure is used in the model. 

a. For the first cycle, the beginning inventory position equals 

to retailer’s lot size as shown by Formula 7. 

𝐵𝐼𝑃1 = 𝑞 (7) 

For the next cycles, the beginning inventory position of 

cycle i equals the ending inventory position of cycle (i-1) plus 

retailer’s lot size as can be seen on Formula 8. 

𝐵𝐼𝑃𝑖 = 𝐸𝐼𝑃𝑖−1 + 𝑞 (8) 

b. Demand for cycle i (𝐷𝑖) follows Poison distribution with 

parameter lambda. Lambda is average retailer demand per 

unit of time. 

c. Ending inventory position of cycle i (𝐸𝐼𝑃𝑖) is determined 

by Formula 9 as follows. 

𝐸𝐼𝑃𝑖  = Max {0, 𝐵𝐼𝑃𝑖  - 𝐷𝑖} (9) 

d. Shortage amount at the end of cycle i, 𝑆𝑈𝑖 , is determined 

by Formula 10 as follows. 

𝑆𝑈𝑖 = 𝑀𝑎𝑥{0, 𝐷𝑖 − 𝐵𝐼𝑃𝑖} (10) 

e. Repeat step a - d for 40 cycles. However, the first 10 

cycles are consider as warm up period, only the results of 

the last 30 cycles are used for data collection purpose. 

For analyzing retailer’s costs, the model considers retailer 

inventory positions at the beginning and at the ending of a 

retailer cycle. There are two possible scenarios that may occur 

for the ending inventory position in a retailer cycle (𝐸𝐼𝑃𝑖). 

a. The first scenario is the ending inventory position 

equals to 0, due to shortages are not backlogged. 

b. The second scenario is the ending inventory position 

is more than 0. 

Above scenarios can be describe in the Figs. 2 and 3 below. 
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Figure 2.  The first scenario 
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Figure 3.  The second scenario 

For both scenarios, the general formula for the retailer 

holding cost per unit time in cycle i (𝑅𝐻𝐶𝑖 ) is expressed on 

Formula 11 as follows. 

𝑅𝐻𝐶𝑖 = 𝐻𝑅 ∗ (
𝐵𝐼𝑃𝑖 + 𝑀𝑎𝑥{0, (𝐵𝐼𝑃𝑖 − 𝐷𝑖)}

2 [1 −
𝑀𝑖𝑛{0, (𝐵𝐼𝑃𝑖 − 𝐷𝑖)}

𝐵𝐼𝑃𝑖
]
) 

(11) 

 

where: HR is unit cost of holding retailer stock ($/unit/time 

unit). 

Hence, the expected retailer holding cost per unit time 

(ERHC) is calculate by using Formula 12 as follows. 

𝐸𝑅𝐻𝐶 =
∑ 𝑅𝐻𝐶𝑖

40
𝑖=11

30
 

(12) 
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Retailer lost sales cost for cycle i (𝑅𝐿𝐶𝑖) is calculated as the 

accumulated shortage amount at the end of the cycle multiplied 

by unit cost of lost sales. Therefore, retailer lost sales cost per 

unit time in cycle i (𝑅𝐿𝐶𝑖) and expected retailer lost sales cost 

per unit time (ERLC) are calculated by using Formula 13 as 

follows. 

𝑅𝐿𝐶𝑖

= 𝐿𝑆 ∗
𝑀𝑎𝑥{0, (𝐷𝑖 − 𝐵𝐼𝑃𝑖)}

𝑡
 

(13) 

where : LS is unit cost of lost sales ($/unit) . 

 

Expected retailer lost sales cost per time unit (ERLC) is 

calculated by using Formula 14 as follows. 

𝐸𝑅𝐿𝐶 =
∑ 𝑅𝐿𝐶𝑖

40
𝑖=11

30
 

(14) 

 

For total system costs calculation, we can determine the 

total system cost per time unit as given by Formula 15 as 

follows. 

Total system cost = 𝐴𝑉𝑂 + ATV + Dc + 𝐸𝑅𝐻𝐶 + 𝐸𝑅𝐿𝐶 (15) 

V. RESULTS AND DISCUSSIONS 

A. Results 

In this research, A VMI model, which was developed by 

[10], is employ. The objective of this research is to analyze the 

effects of GA parameter on optimal solutions and the time to 

reach the optimal solutions. Two scenarios are developed. The 

input data for each scenario is show in the Table 1 below.  

 

 

TABLE I.  INPUT DATA 

1 2

Vendor Order Cost (VOC) 1000 1000 USD Per Pesanan

Vendor Holding Cost (CVH) 0,75 0,5 USD Per Unit Per Unit Waktu

Delivery Cost (Cd) 40 40 USD Per Pengiriman

Retailer Holding Cost (HR) 2 2 USD Per Unit Per Unit Waktu

Retailer Lost Sales Cost (LS) 4 4 USD Per Unit

Scenario
Input Data Unit

 
 

Some software optimization settings are set as follows 

in the Table II. 

TABLE II.  SOFTWARE SETTINGS 

Values

Population Size 50

123

1000

500

Stopping Criteria

Maximum 

Change 0.01%

Number of

Simulation 100

Number of Simulation (Max)

Number of iterations

Parameter

Random Number Seed

 
 

As the results of this research, 81 values of optimal 

solutions are found using simulation optimization software 

@RiskOptimizer for each scenario. The experiment results are 

show in the Table III, and IV below. 

  

 

TABLE III.  OPTIMAL SOLUTIONS (SCENARIO 1) 

Parameter Values 
Probability  of Mutation 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

Pc 

0,1 924,487 924,091 924,203 924,600 948,551 933,903 926,142 940,179 955,782 

0,2 932,512 935,337 924,475 925,353 932,725 940,179 963,686 940,179 924,149 

0,3 955,247 938,966 940,179 926,254 958,096 924,309 927,111 940,179 958,096 

0,4 924,090 924,215 924,118 938,932 924,089 925,554 928,273 940,179 948,273 

0,5 934,480 924,190 931,328 924,711 958,096 931,675 963,686 940,179 958,096 

0,6 1051,218 924,090 927,327 928,691 924,254 924,166 958,096 940,179 948,273 

0,7 924,099 924,142 924,127 926,779 924,172 925,439 931,161 940,179 948,273 

0,8 924,099 954,002 940,179 924,483 946,809 950,464 934,476 940,179 948,273 

0,9 958,096 924,099 924,298 927,319 925,657 955,726 938,809 940,179 948,273 
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TABLE IV.  OPTIMAL SOLUTIONS (SCENARIO 2) 

Parameter 

Values 

Probability  of Mutation 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

Pc 

0,1 1463,718 841,354 840,758 863,133 856,846 852,340 872,679 845,227 856,846 

0,2 840,785 852,893 840,773 841,721 848,341 840,835 866,084 856,846 848,153 

0,3 840,761 841,171 840,757 863,133 856,846 856,846 872,679 856,846 856,846 

0,4 840,962 840,848 840,810 908,512 854,506 856,846 872,679 856,846 848,153 

0,5 841,132 843,385 852,820 848,274 844,550 856,846 872,679 856,846 856,846 

0,6 864,496 853,433 855,894 844,944 841,533 852,236 872,679 856,846 840,766 

0,7 840,758 842,204 848,670 908,512 856,846 842,260 841,556 856,846 842,839 

0,8 840,759 840,769 841,023 844,006 853,606 856,224 868,659 856,846 856,430 

0,9 840,756 840,761 842,776 841,149 843,414 856,846 856,846 856,846 856,430 

 

Each experiment needs different times to reach their optimal solution. Times to reach the optimal solution are shown in 

the Table V and VI below.  

TABLE V.  TIME TO REACH THE OPTIMAL SOLUTION (SCENARIO 1) 

Parameter Values 
Probability of Mutation 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

Probability 

of 

Crossover 

0,1 0:03:39 0:04:38 0:06:57 0:01:57 0:04:00 0:02:48 0:02:22 0:01:14 0:01:19 

0,2 0:01:47 0:02:45 0:03:26 0:01:36 0:03:07 0:01:30 0:01:04 0:01:10 0:02:53 

0,3 0:01:44 0:02:26 0:01:09 0:03:39 0:01:14 0:04:59 0:04:41 0:01:09 0:01:18 

0,4 0:10:08 0:01:43 0:01:40 0:02:00 0:08:30 0:03:19 0:01:37 0:01:09 0:03:04 

0,5 0:02:20 0:06:21 0:02:36 0:03:23 0:01:26 0:03:06 0:01:03 0:01:08 0:01:11 

0,6 0:00:08 0:07:46 0:02:43 0:02:41 0:05:21 0:08:03 0:01:27 0:01:07 0:02:56 

0,7 0:02:10 0:03:53 0:04:14 0:05:18 0:02:56 0:04:30 0:05:47 0:01:08 0:02:58 

0,8 0:07:46 0:02:19 0:01:38 0:03:20 0:04:20 0:05:51 0:03:40 0:01:11 0:02:56 

0,9 0:01:18 0:08:36 0:04:42 0:02:15 0:02:10 0:03:12 0:04:07 0:01:08 0:02:55 

TABLE VI.  TIME TO REACH THE OPTIMAL SOLUTION (SCENARIO 2) 

Parameter Values Probability of Mutation 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

Probability 

of 

Crossover 

0,1 0:04:08 0:04:18 0:04:08 0:01:01 0:01:06 0:02:07 0:01:21 0:01:27 0:01:09 

0,2 0:01:26 0:03:47 0:04:48 0:03:23 0:02:12 0:06:40 0:01:52 0:01:08 0:02:22 

0,3 0:03:39 0:05:08 0:06:46 0:01:01 0:01:07 0:01:08 0:01:23 0:01:08 0:01:09 

0,4 0:01:41 0:08:47 0:02:59 0:01:07 0:02:13 0:01:08 0:01:24 0:01:08 0:02:20 

0,5 0:02:28 0:03:53 0:02:17 0:05:59 0:03:34 0:01:07 0:01:21 0:01:08 0:01:10 

0,6 0:02:00 0:03:54 0:01:35 0:03:33 0:03:53 0:03:00 0:01:23 0:01:08 0:03:26 

0,7 0:07:21 0:02:11 0:01:16 0:01:06 0:01:07 0:02:16 0:02:26 0:01:08 0:03:37 

0,8 0:03:05 0:02:45 0:02:10 0:05:07 0:01:33 0:03:14 0:02:25 0:01:09 0:02:11 

0,9 0:06:18 0:05:05 0:02:28 0:03:17 0:02:08 0:01:05 0:01:24 0:01:07 0:02:12 
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To simplify the analysis process, the simulation results are 

plotted in the Fig. 4 to 11 as follows. 

 

 
Figure 4.  Effects of Pm values on optimal solutions (Scenario 1) 

 

 
Figure 5.  Effects of Pm values on optimal solutions (Scenario 2) 

 
Figure 6.  Effects of Pc values on optimal solutions (Scenario 1) 

 
Figure 7.  Effects of Pc values on optimal solutions (Scenario 2) 

 

Figure 8.  Effects of Pm on time to optimal solution (Scenario 1) 

 

Figure 9.  Effects of Pm on time to optimal solution (Scenario 2) 
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Figure 10.  Effects of Pc on time to optimal solution (Scenario 1) 

 
Figure 11.  Effects of Pc on time to optimal solution (Scenario 2) 

 

B. Discussions 

The simulation results for scenario 1 are shown in Table 3. 

The best combination for scenario 1 is 0.5 for probability of 

mutation and 0.4 for probability of crossover. The total systems 

cost is 924.089 USD/time unit. Statistically, the optimal 

solutions have maximum values of 1051.218 USD/time unit, 

the average is 937,447 USD/time unit and the standard 

deviation is 17.675 USD/time unit (1,9% from the average). 

Fig. 4 and 6 confirm that changing of probability of mutation 

and crossover have small effect to optimal solutions. 

The simulation results for scenario 2 are show in Table 4. 

The best combination for scenario 2 is 0.1 for probability of 

mutation and 0.9 for probability of crossover. The total systems 

cost is 840.756 USD/time unit. Statistically, the optimal 

solutions have maximum values of 1463.7180 USD/time unit, 

the average is 860.077 USD/time unit and the standard 

deviation is 69.141 USD/time unit (8% from the average). Fig. 

5 and 7 confirm that changing of probability of mutation and 

crossover mostly have small effect to optimal solutions, except 

Pm and Pc equal to 0.1. 

Times to reach the optimal solutions for scenario 1 are 

show in Table 5. The time to reach the best optimal solution for 

scenario 1 is 8 minutes 30 second (08:30). Statistically, the 

minimum time to reach optimal solution is 8 seconds, the 

average is 3 minutes 9 seconds, the maximum is 10 minutes 8 

seconds and the standard deviation is 2 minutes 5 seconds (66% 

from average). Fig. 8 and 10 confirm fluctuations of times to 

reach optimal solutions. 

Times to reach the optimal solutions for scenario 2 are 

show in Table 6. The time to reach the best optimal solution for 

scenario 2 is 6 minutes 18 seconds (06:18). Statistically, the 

minimum time to reach optimal solution is 1 minute 1 second, 

the average is 2 minutes 37 seconds, the maximum is 8 minutes 

47 seconds and the standard deviation is 1 minute 42 second 

(65% from average). Fig. 9 and 11 confirm fluctuations of times 

to reach optimal solutions. 

VI. CONCLUSION 

This research aims at analyzing relations between GA 

parameters and the optimal solutions. The observed parameters 

are probability of mutation and probability of crossover. Based 

on the research results, the best optimal solutions are reach by 

different GA parameters. The best combination for scenario 1 

is 0.5 for the probability of mutation and 0.4 for the probability 

of crossover. On the other hand, the best combination for 

scenario 2 is 0.1 for the probability of mutation and 0.9 for the 

probability of crossover. Statistically, the standard deviation of 

optimal solutions is 1.8% (from average) for scenario 1 and 8% 

(from average) for scenario 2. This means that the optimal 

solutions for scenario 2 are more diverse than scenario 1. For 

times to reach the optimal solution, scenario 1 are also more 

diverse than scenario 2. This research concludes that a 

combination of mutation rate and crossover rate is only suitable 

for a certain condition. In this research, increasing/reducing GA 

parameters values do not automatically improve the optimal 

solutions and time to reach the optimal solutions. 
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