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Abstract—In the programming world, understanding floating point is not easy, especially if there are floating point and bit-level 

interactions. Although there are currently many libraries to simplify the computation process, still many programmers today who do 

not really understand how the floating point manipulation process. Therefore, this paper aims to provide insight into how to 

manipulate IEEE-754 32-bit floating point with different representation of results, which are integers and code rules of float twice.  

The method used is a literature review, adopting a float-twice prototype using C programming. The results of this study are 

applications that can be used to represent integers of floating-point manipulation by adopting a float-twice prototype. Using the 

application programmers make it easy for programmers to determine the type of program data to be developed, especially those 

running on 32 bits floating point (Single Precision). 
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1 INTRODUCTION  

Computers encode information in the form of bits, generally 
arranged in bytes. Different encodings are used for 
representation of integers, real numbers, and character strings. 
Different computer models use different conventions for 
encoding numbers and for ordering bytes in multi-byte data 
[1][2]. In a book states that until the 1980s, each computer 
manufacturer made a convention for how to represent floating-
point numbers and detailed the operations carried out by them. 
In addition, they are less concerned about the accuracy of 
operations, seeing speed and ease of implementation as more 
important than numerical precision. 

IEEE Standard 754 floating point is the most common 
representation standard for real numbers on computers today, 
which is used in Intel-based PC, Macintosh, and most Unix 
platforms are not just limited to floating point PCs already 
widely used on microcontrollers that are widely used for systems 
embedded [3][4][5]. This standard is also a product of the 
Floating-Point Working Group, and is sponsored by, the 
Microprocessor Standards Committee of the IEEE Computer 
Society. This standard gives order to carry out floating-point 
calculations that give results, regardless of whether the 
processing is carried out in hardware, software, or a combination 
of both. In a programming environment, this standard is also 
used to form the basis of a dialogue between numerical 
collections and programming language designers.  

Therefore, it is hoped that language designers will see a 
series of operations, precision and exception controls, all 
explained here as a guide for programmers with easily 
acceptable control expressions and exceptions. In addition, it is 
hoped that designers will be guided by this standard in order to 
provide fully acceptable extensions. In a book, explaining his 
treatment of this material is based on a series of mathematical 
principles. They start with the basic definition of encoding and 
then acquire some properties as ranges of numbers that can be 
represented, bit-level representations and some arithmetic 
operation properties. They believe that it is important to examine 
material from the standpoint that this abstract, because the 
programmer must have a clear understanding of how the 
computer arithmetic generally associated with integer and real 
arithmetic[1]. 

Language C was designed to accommodate a variety of 
different implementations in terms of word size and numeric 
encoding. Understanding this encoding at the bit level, as well 
as understanding the mathematical characteristics of arithmetic 
operations, is very important for the programmer to operate 
properly in the full range of numerical values [6][7][8]. Most 
machines encode signed numbers using a two’s-complement 
representation and encode floating-point numbers using IEEE 
Standard 754. In a book, understanding the understanding of bit-
level coding, and understanding the mathematical characteristics 
of arithmetic operations is important to make the program 
operate in accordance with the range of numeric values [1]. 

The C ++ programming language created by Bjarne 
Stroustrup is a derivative of the C programming language 

developed at Bong Labs (Dennis Ritchie) in the early 1970s. The 
language was derived from the previous language, namely B, at 
first; the language was designed as a programming language that 
is run on UNIX systems. The language uses the exact same 
numerical representations and operations. Everything discussed 
about C in this section applies also to C ++. Standard C is indeed 
designed for implementation in a variety of possibilities. 

There are two types of storage layouts in IEEE floating point 
754, namely single (32 bit) and double (64 bit) [9][10]. Table 1 
presents the IEEE floating point 754 32 bit and 64 bit standard 
components [11][12]. However, this paper focuses on 
manipulate Floating-Point 32-bit (single-precision). 

Now many programmers do not understand how to make a 
program that uses light memory. Increasing number of plugins, 
bundles of function, Framework simplify writing encoding, 
without the programmer knowing the origin of the process or 
data representation of the various types of data. 

The purpose of this paper is to become more familiar with 
integer representations of floating-point numbers, especially on 
float-twice. The programmer will easily solve a series of 
programming. Although many of these puzzles are quite 
artificial, readers will find more knowledge about bits in doing 
them. The results of this study are applications that can represent 
integers of floating-point manipulation based on the float-twice 
prototype using the C programming language [1]. 

 

1.1 Integer Representation 

This section explains two ways of bit, which can be used for 
encoding integers, the first integer representing non-negative 
numbers and the second integer representing negative, zero and 
positive numbers [1]. 

 

1.2 IEEE Standard 754 Floating Point 

All changed when the emergence of the IEEE Standard 754 
in the 1985s, standards and operations that were carefully crafted 
to represent floating-point numbers. This effort began in 1976 
under Intel sponsors with the design of 8087, a chip that provides 
floating-point support for 8086 processors [1][7]. 

The format for floating point data operations depends on the 
number of bits in the data. They are named half precision for 16 
bits, single precision for 32 bits, double precision for 64 bits and 
Quadruple precision for 128 bits as shown in Table 1. They are 
divided into 3 parts as Sign bits, Exponents and Mantissa 
[12][13][14][15] [16][17]. 

 

Table 1 Table Type Styles 

 Sign Exponent Fraction 

Single Precision 1 [31] 8 [30–23] 23 [22–00] 

Double Precision 1 [63] 11 [62–52] 52 [51–00] 
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1.2.1 Storage Layout 

1.2.1.1 Sign: At the marker the value of 0 indicates a 

positive number, while the value of 1 indicates a 

negative number. So what if reversing the bit value, 

the value will be adjusted again. 

1.2.1.2 Exponent: The exponent field is used to represent 

positive or negative exponents. To do this, the bias 

is added to the actual exponent to get the exponent to 

be saved. In IEEE single-precision, the bias value is 

127. This means that the zero exponent 127 is stored 

in the exponent field. For example, if the stored value 

is 200, then it shows that the exponent (200-127) or 

equal to 73. While the value of 8 on the exponent 

indicates that the exponent field in single precision 

is 8 bits. For double precision, the exponent field is 

11 bits, and has a bias of 1023. 

1.2.1.3 Mantissa/Fraction: Mantissa, also known as 

significand is used to represent the precision bits of 

a number. Mantissa consists of an implicit main bit 

and a fraction bit. 

 

1.2.2 Special Value 
IEEE reserves the exponent field values of all 0 and all 1 to 

show special values in the floating-point scheme [1]. How to 
determine whether the number is normalized, denormalized, or 
special value, can be seen in Figure 1. 

1.2.2.1 Denormalize 

If all exponents are 0, but the fraction is not 0 (if it 

will not be interpreted as zero), then the value is a 

denormalizer number, which does not have a main 

assumption of 1 before the binary point. So, this 

represents numbers (-1)s × 0.f × 2-126, where s is the 

sign bit and f is a fraction. For double precision, 

normalized numbers are shaped (-1)s × 0.f × 2-1022. 

From here, you can interpret zero as a special type of 

number that is normalized. 

1.2.2.2 Zero 

As noted above, zeros cannot be directly represented 

in a straight format, because assumption 1 is leading, 

(we need to determine the true zero mantissa to 

produce a zero value). Zero is a special value denoted 

by the zero exponent field and the zero fraction field. 

Note that -0 and +0 are different values, even though 

they are the same [18]. 

1.2.2.3 Infinity 

The value (+) of negative infinity and (-) positive 

infinity are denoted by all exponents having a value 

of 1 and all fractions of value 0. A bit sign 

distinguishes between negative infinity and positive 

infinity. Being able to show an infinite value as a 

specific value, because it allows operations to 

proceed through an overflow situation. Operations 

with unlimited values are well defined in IEEE 

floating point [18]. 

1.2.2.4 Not A Number 

Not a Number value used to represent values that do 
not represent real numbers. NaN is represented by the 
exponent of all non-faction [18]. 

 

Figure 1.  Category of single-precision floating-point values. 

 

1.3 Float Twice 

Float twice is a concept for IEEE 754 floating point bit-
manipulation, following the rules of the bit-level floating-point 
code, carrying out the function following the prototype is shown 
in Figure 2. To sum up, the following in Table 2 are the 
corresponding values for a given representation. 

 

Table 2 Float Values 

Sign Exponent (e) Fraction (f) Value 

0 00⋯00 00⋯00 +0 

0 00⋯00 

00⋯01 

⋮ 
11⋯11 

Positive Denormalized Real 

0.f × 2(−b+1) 

0 

00⋯01 

⋮ 
11⋯10 

XX⋯XX 
Positive Normalized Real 

1.f × 2(e−b) 

0 11⋯11 00⋯00 +∞ 

0 11⋯11 

00⋯01 

⋮ 
01⋯11 

SNaN 

0 11⋯11 1X⋯XX QNaN 

1 00⋯00 00⋯00 −0 

1 00⋯00 

00⋯01 

⋮ 
11⋯11 

Negative Denormalized Real 

−0.f × 2(−b+1) 

1 

00⋯01 

⋮ 
11⋯10 

XX⋯XX 
Negative Normalized Real 

−1.f × 2(e−b) 

1 11⋯11 00⋯00 −∞ 

1 11⋯11 

00⋯01 

⋮ 
01⋯11 

SNaN 

1 11⋯11 1X⋯XX QNaN 
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2 METHOD 

This paper uses the literature review method from several 
literatures, journals, e-books, webpages, and proceedings. In 
addition, this paper also follows the rules for coding float twice 
of bit-level floating-point, in its implementation following the 
prototype shown in Figure 2. 

 

2.1 Literature Review 

Literature review or literature review is written material in 
the form of books, journals that discuss topics to be studied. 
From the opinions of several experts, in general it can be 
concluded that the literature review is a description or 
description of the literature that is relevant to the particular field 
or topic to be examined [19][20]. 

 

2.2 Prototype of Float Twice 

In this study following is the prototype of float twice as 
shown in Figure 2. The float twice formula is as in Formula (1). 

 

 

Figure 2.  Prototype of float twice 

 2*f. 

 

3 RESULT AND DISCUSSION 

This session presents the results of the float twice 
implementation and the discussion, which in subbab 1.1.2. 
presents the process of denormalization, normalization, and NaN 
(Not a Number) or numeric data type values that represent 
undetermined or under-represented values, especially in 
floating-point arithmetic. The first thing to do was to create a 
function, as shown in Figure 3 below. 

 

 

Figure 3.  Function of float twice 

Then we made a program like in Figure 4 below, but before 
calling the function, do not forget to #include <stdio.h> so the 
program can run correctly. 

 

Figure 4.  Call float twice function 

 

The input is of integer type, but assumed to be float. Then do 
the float twice operation of the input. Therefore, the result is an 
integer from the bit representation of the float number from the 
float twice. Look at Figure 5. Result C programming below. 

 

 

Figure 5.  Result of C program 

 

Furthermore, how the calculation process in this program is 
presented as follows. The calculation result of float twice from 
input 2 is 4. Normalization of binary representation of number 
4, shifts the position of decimal point 2 to the left so that only 
one non-zero digit is left on the left: 

4(10) = 

100(2) = 

100(2) × 20 = 

1.00(2) × 22 
 

In this position, there are the following elements that will be 
included in 32-bit single-precision IEEE 754 binary floating-
point representation: 

Sign: 0 (a positive number) 

Exponent (unadjusted): 2 

 

/* Calculation formula 2 * f. If f is NaN (Not a Number), 

then return f.*/ 

float_bits float_twice(float_bits f); 
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Mantissa (not normalized): 1.00 

Adjust the exponent in the 8 bits excess / bias notation and then 
change from decimal (base 10) to 8 binary bits, using the same 
technique to divide it repeatedly with 2: 

Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 =  
2 + 2(8-1) - 1 = (2 + 127) (10) = 129(10) 

 

Division = Quotient + Remainder; 

129 ÷ 2 = 64 + 1; 

64 ÷ 2 = 32 + 0; 

32 ÷ 2 = 16 + 0; 

16 ÷ 2 = 8 + 0; 

8 ÷ 2 = 4 + 0; 

4 ÷ 2 = 2 + 0; 

2 ÷ 2 = 1 + 0; 

1 ÷ 2 = 0 + 1; 

 

Exponent (adjusted) = 129(10) = 10000001(2) 

 

Conclusion 4(10) = 0-10000001-00000000000000000000000 

 

So the integer representation of binary  

0-10000001-00000000000000000000000 is 1082130432. 

 

Table 3 Floating-point IEEE-754 Format 

Sign  0 

(1 bit): 31 

Exponent  1    0   0   0   0   0   0   1 

(8 bits): 30 29 28 27 26 25 24 23 

Mantissa: 0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 

(23 bits) 22 21 20 19 18 17 15 14 13 12 11 10  9   8   7   6   5   4   3   2   1 

 

4 CONCLUSION 

Based on the results of this research, a C programmer, in 
order to manipulate bits of floating-point numbers, should first 
understand the binaries and standard components of the IEEE 
Floating Point-754 Single Precision 32 bits, understand the 
conversion of data types at C. Our approach to do research 
described in this paper is started from the input in the form of an 
integer which is assumed to be a float. Then we produce an 
integer representation, which can be used by the programmer to 
see the integer representation of a value. Therefore, in the future 
the programmer can determine the use of data types that run on 

32 bits (single precision) correctly. Either suggestions for future 
researchers is to explore IEEE Floating Point-754 Double 
Precision 32-bit or it can be other bit-level floating-point such as 
i2f, f2i. All of these could be seen as the production of 
knowledge about the basis of programming. 
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