
DOI: 10.14421/ijid.2020.09103 IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

 Vol. 9, No. 1, 2020, Pp. 15-20

Integer Representation of Floating-Point

Manipulation with Float Twice

Wakhid Kurniawan1, Hafizd Ardiansyah2, Annisa Dwi Oktavianita3, Mr. Fitree Tahe4

1, 2, 3, 4Student of Department of Informatics

Informatics Graduate Program, Faculty of Science and Technology

UIN Sunan Kalijaga Yogyakarta
1PT.Cobra Dental Indonesia

3PT. AVO Innovation Technology
119206050003@student.uin-suka.ac.id, 219206050002@student.uin-suka.ac.id, 319206050019@student.uin-suka.ac.id

Article History

Received June 9th, 2020

Revised July 1st, 2020

Accepted July 28th, 2020

Published July, 2020

Abstract—In the programming world, understanding floating point is not easy, especially if there are floating point and bit-level

interactions. Although there are currently many libraries to simplify the computation process, still many programmers today who do

not really understand how the floating point manipulation process. Therefore, this paper aims to provide insight into how to

manipulate IEEE-754 32-bit floating point with different representation of results, which are integers and code rules of float twice.

The method used is a literature review, adopting a float-twice prototype using C programming. The results of this study are

applications that can be used to represent integers of floating-point manipulation by adopting a float-twice prototype. Using the

application programmers make it easy for programmers to determine the type of program data to be developed, especially those

running on 32 bits floating point (Single Precision).

Keywords-float; bit_manipulation; integer; c_programming; float_twice

https://dx.doi.org/10.14421/ijid.2020.09103

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 1, 2020, Pp. 15-20

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

16

1 INTRODUCTION

Computers encode information in the form of bits, generally
arranged in bytes. Different encodings are used for
representation of integers, real numbers, and character strings.
Different computer models use different conventions for
encoding numbers and for ordering bytes in multi-byte data
[1][2]. In a book states that until the 1980s, each computer
manufacturer made a convention for how to represent floating-
point numbers and detailed the operations carried out by them.
In addition, they are less concerned about the accuracy of
operations, seeing speed and ease of implementation as more
important than numerical precision.

IEEE Standard 754 floating point is the most common
representation standard for real numbers on computers today,
which is used in Intel-based PC, Macintosh, and most Unix
platforms are not just limited to floating point PCs already
widely used on microcontrollers that are widely used for systems
embedded [3][4][5]. This standard is also a product of the
Floating-Point Working Group, and is sponsored by, the
Microprocessor Standards Committee of the IEEE Computer
Society. This standard gives order to carry out floating-point
calculations that give results, regardless of whether the
processing is carried out in hardware, software, or a combination
of both. In a programming environment, this standard is also
used to form the basis of a dialogue between numerical
collections and programming language designers.

Therefore, it is hoped that language designers will see a
series of operations, precision and exception controls, all
explained here as a guide for programmers with easily
acceptable control expressions and exceptions. In addition, it is
hoped that designers will be guided by this standard in order to
provide fully acceptable extensions. In a book, explaining his
treatment of this material is based on a series of mathematical
principles. They start with the basic definition of encoding and
then acquire some properties as ranges of numbers that can be
represented, bit-level representations and some arithmetic
operation properties. They believe that it is important to examine
material from the standpoint that this abstract, because the
programmer must have a clear understanding of how the
computer arithmetic generally associated with integer and real
arithmetic[1].

Language C was designed to accommodate a variety of
different implementations in terms of word size and numeric
encoding. Understanding this encoding at the bit level, as well
as understanding the mathematical characteristics of arithmetic
operations, is very important for the programmer to operate
properly in the full range of numerical values [6][7][8]. Most
machines encode signed numbers using a two’s-complement
representation and encode floating-point numbers using IEEE
Standard 754. In a book, understanding the understanding of bit-
level coding, and understanding the mathematical characteristics
of arithmetic operations is important to make the program
operate in accordance with the range of numeric values [1].

The C ++ programming language created by Bjarne
Stroustrup is a derivative of the C programming language

developed at Bong Labs (Dennis Ritchie) in the early 1970s. The
language was derived from the previous language, namely B, at
first; the language was designed as a programming language that
is run on UNIX systems. The language uses the exact same
numerical representations and operations. Everything discussed
about C in this section applies also to C ++. Standard C is indeed
designed for implementation in a variety of possibilities.

There are two types of storage layouts in IEEE floating point
754, namely single (32 bit) and double (64 bit) [9][10]. Table 1
presents the IEEE floating point 754 32 bit and 64 bit standard
components [11][12]. However, this paper focuses on
manipulate Floating-Point 32-bit (single-precision).

Now many programmers do not understand how to make a
program that uses light memory. Increasing number of plugins,
bundles of function, Framework simplify writing encoding,
without the programmer knowing the origin of the process or
data representation of the various types of data.

The purpose of this paper is to become more familiar with
integer representations of floating-point numbers, especially on
float-twice. The programmer will easily solve a series of
programming. Although many of these puzzles are quite
artificial, readers will find more knowledge about bits in doing
them. The results of this study are applications that can represent
integers of floating-point manipulation based on the float-twice
prototype using the C programming language [1].

1.1 Integer Representation

This section explains two ways of bit, which can be used for
encoding integers, the first integer representing non-negative
numbers and the second integer representing negative, zero and
positive numbers [1].

1.2 IEEE Standard 754 Floating Point

All changed when the emergence of the IEEE Standard 754
in the 1985s, standards and operations that were carefully crafted
to represent floating-point numbers. This effort began in 1976
under Intel sponsors with the design of 8087, a chip that provides
floating-point support for 8086 processors [1][7].

The format for floating point data operations depends on the
number of bits in the data. They are named half precision for 16
bits, single precision for 32 bits, double precision for 64 bits and
Quadruple precision for 128 bits as shown in Table 1. They are
divided into 3 parts as Sign bits, Exponents and Mantissa
[12][13][14][15] [16][17].

Table 1 Table Type Styles

 Sign Exponent Fraction

Single Precision 1 [31] 8 [30–23] 23 [22–00]

Double Precision 1 [63] 11 [62–52] 52 [51–00]

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 1, 2020, Pp. 15-20

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

17

1.2.1 Storage Layout

1.2.1.1 Sign: At the marker the value of 0 indicates a

positive number, while the value of 1 indicates a

negative number. So what if reversing the bit value,

the value will be adjusted again.

1.2.1.2 Exponent: The exponent field is used to represent

positive or negative exponents. To do this, the bias

is added to the actual exponent to get the exponent to

be saved. In IEEE single-precision, the bias value is

127. This means that the zero exponent 127 is stored

in the exponent field. For example, if the stored value

is 200, then it shows that the exponent (200-127) or

equal to 73. While the value of 8 on the exponent

indicates that the exponent field in single precision

is 8 bits. For double precision, the exponent field is

11 bits, and has a bias of 1023.

1.2.1.3 Mantissa/Fraction: Mantissa, also known as

significand is used to represent the precision bits of

a number. Mantissa consists of an implicit main bit

and a fraction bit.

1.2.2 Special Value
IEEE reserves the exponent field values of all 0 and all 1 to

show special values in the floating-point scheme [1]. How to
determine whether the number is normalized, denormalized, or
special value, can be seen in Figure 1.

1.2.2.1 Denormalize

If all exponents are 0, but the fraction is not 0 (if it

will not be interpreted as zero), then the value is a

denormalizer number, which does not have a main

assumption of 1 before the binary point. So, this

represents numbers (-1)s × 0.f × 2-126, where s is the

sign bit and f is a fraction. For double precision,

normalized numbers are shaped (-1)s × 0.f × 2-1022.

From here, you can interpret zero as a special type of

number that is normalized.

1.2.2.2 Zero

As noted above, zeros cannot be directly represented

in a straight format, because assumption 1 is leading,

(we need to determine the true zero mantissa to

produce a zero value). Zero is a special value denoted

by the zero exponent field and the zero fraction field.

Note that -0 and +0 are different values, even though

they are the same [18].

1.2.2.3 Infinity

The value (+) of negative infinity and (-) positive

infinity are denoted by all exponents having a value

of 1 and all fractions of value 0. A bit sign

distinguishes between negative infinity and positive

infinity. Being able to show an infinite value as a

specific value, because it allows operations to

proceed through an overflow situation. Operations

with unlimited values are well defined in IEEE

floating point [18].

1.2.2.4 Not A Number

Not a Number value used to represent values that do
not represent real numbers. NaN is represented by the
exponent of all non-faction [18].

Figure 1. Category of single-precision floating-point values.

1.3 Float Twice

Float twice is a concept for IEEE 754 floating point bit-
manipulation, following the rules of the bit-level floating-point
code, carrying out the function following the prototype is shown
in Figure 2. To sum up, the following in Table 2 are the
corresponding values for a given representation.

Table 2 Float Values

Sign Exponent (e) Fraction (f) Value

0 00⋯00 00⋯00 +0

0 00⋯00

00⋯01

⋮
11⋯11

Positive Denormalized Real

0.f × 2(−b+1)

0

00⋯01

⋮
11⋯10

XX⋯XX
Positive Normalized Real

1.f × 2(e−b)

0 11⋯11 00⋯00 +∞

0 11⋯11

00⋯01

⋮
01⋯11

SNaN

0 11⋯11 1X⋯XX QNaN

1 00⋯00 00⋯00 −0

1 00⋯00

00⋯01

⋮
11⋯11

Negative Denormalized Real

−0.f × 2(−b+1)

1

00⋯01

⋮
11⋯10

XX⋯XX
Negative Normalized Real

−1.f × 2(e−b)

1 11⋯11 00⋯00 −∞

1 11⋯11

00⋯01

⋮
01⋯11

SNaN

1 11⋯11 1X⋯XX QNaN

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 1, 2020, Pp. 15-20

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

18

2 METHOD

This paper uses the literature review method from several
literatures, journals, e-books, webpages, and proceedings. In
addition, this paper also follows the rules for coding float twice
of bit-level floating-point, in its implementation following the
prototype shown in Figure 2.

2.1 Literature Review

Literature review or literature review is written material in
the form of books, journals that discuss topics to be studied.
From the opinions of several experts, in general it can be
concluded that the literature review is a description or
description of the literature that is relevant to the particular field
or topic to be examined [19][20].

2.2 Prototype of Float Twice

In this study following is the prototype of float twice as
shown in Figure 2. The float twice formula is as in Formula (1).

Figure 2. Prototype of float twice

 2*f. 

3 RESULT AND DISCUSSION

This session presents the results of the float twice
implementation and the discussion, which in subbab 1.1.2.
presents the process of denormalization, normalization, and NaN
(Not a Number) or numeric data type values that represent
undetermined or under-represented values, especially in
floating-point arithmetic. The first thing to do was to create a
function, as shown in Figure 3 below.

Figure 3. Function of float twice

Then we made a program like in Figure 4 below, but before
calling the function, do not forget to #include <stdio.h> so the
program can run correctly.

Figure 4. Call float twice function

The input is of integer type, but assumed to be float. Then do
the float twice operation of the input. Therefore, the result is an
integer from the bit representation of the float number from the
float twice. Look at Figure 5. Result C programming below.

Figure 5. Result of C program

Furthermore, how the calculation process in this program is
presented as follows. The calculation result of float twice from
input 2 is 4. Normalization of binary representation of number
4, shifts the position of decimal point 2 to the left so that only
one non-zero digit is left on the left:

4(10) =

100(2) =

100(2) × 20 =

1.00(2) × 22

In this position, there are the following elements that will be
included in 32-bit single-precision IEEE 754 binary floating-
point representation:

Sign: 0 (a positive number)

Exponent (unadjusted): 2

/* Calculation formula 2 * f. If f is NaN (Not a Number),

then return f.*/

float_bits float_twice(float_bits f);

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 1, 2020, Pp. 15-20

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

19

Mantissa (not normalized): 1.00

Adjust the exponent in the 8 bits excess / bias notation and then
change from decimal (base 10) to 8 binary bits, using the same
technique to divide it repeatedly with 2:

Exponent (adjusted) = Exponent (unadjusted) + 2(8-1) - 1 =
2 + 2(8-1) - 1 = (2 + 127) (10) = 129(10)

Division = Quotient + Remainder;

129 ÷ 2 = 64 + 1;

64 ÷ 2 = 32 + 0;

32 ÷ 2 = 16 + 0;

16 ÷ 2 = 8 + 0;

8 ÷ 2 = 4 + 0;

4 ÷ 2 = 2 + 0;

2 ÷ 2 = 1 + 0;

1 ÷ 2 = 0 + 1;

Exponent (adjusted) = 129(10) = 10000001(2)

Conclusion 4(10) = 0-10000001-00000000000000000000000

So the integer representation of binary

0-10000001-00000000000000000000000 is 1082130432.

Table 3 Floating-point IEEE-754 Format

Sign 0

(1 bit): 31

Exponent 1 0 0 0 0 0 0 1

(8 bits): 30 29 28 27 26 25 24 23

Mantissa: 0 0

(23 bits) 22 21 20 19 18 17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

4 CONCLUSION

Based on the results of this research, a C programmer, in
order to manipulate bits of floating-point numbers, should first
understand the binaries and standard components of the IEEE
Floating Point-754 Single Precision 32 bits, understand the
conversion of data types at C. Our approach to do research
described in this paper is started from the input in the form of an
integer which is assumed to be a float. Then we produce an
integer representation, which can be used by the programmer to
see the integer representation of a value. Therefore, in the future
the programmer can determine the use of data types that run on

32 bits (single precision) correctly. Either suggestions for future
researchers is to explore IEEE Floating Point-754 Double
Precision 32-bit or it can be other bit-level floating-point such as
i2f, f2i. All of these could be seen as the production of
knowledge about the basis of programming.

ACKNOWLEDGMENT

This paper is one of the assignment from Computer Systems
and Organization course, the Department of Informatics
Graduate Program, Faculty of Science and Technology UIN
Sunan Kalijaga Yogyakarta.

REFERENCES

[1] R. E. Bryant and D. R. O. Hallaron, Computer Systems. A Programmer’s
Perspective [3rd ed.]. Boston: Pearson, 2016.

[2] M. Drumond, T. Lin, B. Falsafi, and M. Jaggi, “Training Dnns with hybrid
block floating point,” Adv. Neural Inf. Process. Syst., vol. 2018-Decem,
no. NeurIPS, pp. 453–463, 2018.

[3] S. Janakiraman, K. Thenmozhi, J. B. B. Rayappan, and R. Amirtharajan,
“Lightweight chaotic image encryption algorithm for real-time embedded
system: Implementation and analysis on 32-bit microcontroller,”
Microprocess. Microsyst., vol. 56, pp. 1–12, 2018.

[4] Y. P. You, T. C. Lin, and W. Yang, “Translating AArch64 floating-point
instruction set to the x86-64 platform,” ACM Int. Conf. Proceeding Ser.,
2019.

[5] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, “High-performance
fpga-based cnn accelerator with block-floating-point arithmetic,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 27, no. 8, pp. 1874–1885, 2019.

[6] U. Sidi, M. Ben Abdellah, M. Fez, D. Chenouni, M. Berrada, and A.
Tahiri, “Paper—A Serious Game for Learning C Programming Language
Concepts Using Solo Taxonomy A Serious Game for Learning C
Programming Language Concepts Using Solo Taxonomy Alaeeddine
Yassine,” iJET, pp. 110–127, 2017.

[7] A. Sanchez-Stern, P. Panchekha, S. Lerner, and Z. Tatlock, “Finding root
causes of floating point error,” ACM SIGPLAN Not., vol. 53, no. 4, pp.
256–269, 2018.

[8] C. Series, “Analysis and Research of Sorting Algorithm in Data Structure
Based on Analysis and Research of Sorting Algorithm in Data Structure
Based on C Language,” 2020.

[9] S. Smith, Programming with 64-Bit ARM Assembly Language. Canada:
Apress, 2020.

[10] K. D. Rao, P. V. Muralikrishna, and C. Gangadhar, “FPGA
Implementation of 32 Bit Complex Floating Point Multiplier Using Vedic
Real Multipliers with Minimum Path Delay,” 2018 5th IEEE Uttar
Pradesh Sect. Int. Conf. Electr. Electron. Comput. Eng. UPCON 2018,
pp. 1–6, 2018.

[11] J. J. J. Nesam and S. Sivanantham, “An area-efficient 32-bit floating point
multiplier using hybrid GPPs addition,” 2017 Int. Conf. Microelectron.
Devices, Circuits Syst. ICMDCS 2017, vol. 2017-Janua, pp. 1–4, 2017.

[12] A. Burud and P. Bhaskar, “Design and Implementation of FPGA Based
32 Bit Floating Point Processor for DSP Application,” Proc. - 2018 4th
Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2018, no. ref 15,
pp. 1–5, 2018.

[13] P. Lindstrom, S. Lloyd, and J. Hittinger, “Universal coding of the reals:
Alternatives to IEEE floating point,” ACM Int. Conf. Proceeding Ser., no.
March, 2018.

[14] I. Corporation, “[3]Intel ® 64 and IA-32 Architectures Software
Developer ’ s Manual Documentation Changes,” System, vol. 3, no.
253665, 2011.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 1, 2020, Pp. 15-20

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

20

[15] C. R. S. Hanuman and J. Kamala, “Hardware Implementation of 24-bit
Vedic Multiplier in 32-bit Floating-Point Divider,” 2018 4th Int. Conf.
Electr. Electron. Syst. Eng. ICEESE 2018, pp. 60–64, 2018.

[16] A. M. San and A. N. Yakunin, “Hardware implementation of floating-
point operating devices by using IEEE-754 binary arithmetic standard,”
Proc. 2019 IEEE Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus
2019, pp. 1624–1630, 2019.

[17] R. Watpade and P. Palsodkar, “BSD adder for floating point arithmetic:
A review,” Proc. 2017 IEEE Int. Conf. Commun. Signal Process. ICCSP
2017, vol. 2018-Janua, pp. 553–556, 2018.

[18] L. Kamble, P. Palsodkar, and P. Palsodkar, “Research trends in
development of floating point computer arithmetic,” Proc. 2017 IEEE Int.

Conf. Commun. Signal Process. ICCSP 2017, vol. 2018-Janua, no. April,
pp. 329–333, 2018.

[19] C. R. Semiawan, Metode Penelitian Kualitatif: Jenis, Karakteristik dan
Keunggulannya. Jakarta: Grasindo, 2010.

[20] S. A. Bawankar and P. G. D. Korde, “Review on 32 bit single precision
Floating point unit (FPU) Based on IEEE 754 Standard using VHDL,”
Int. Res. J. Eng. Technol., vol. 4, no. 2, pp. 1077–1082, 2017.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

