
DOI: 10.14421/ijid.2020.09207 IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

 Vol. 9, No. 2, 2020, Pp. 100-110

A Comparative Study of Transfer Learning and

Fine-Tuning Method on Deep Learning Models for

Wayang Dataset Classification

Ahmad Mustafid1, Muhammad Murah Pamuji2, Siti Helmiyah3
1Department of Computer Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany

2Department of Electrical Engineering and Information Technology, Gadjah Mada University, Yogyakarta, Indonesia
3Master of Informatics Engineering, Ahmad Dahlan University, Yogyakarta, Indonesia

1ahmad.mstfd@gmail.com, 2murah.pamuji@mail.ugm.ac.id, 3siti1708048022@webmail.uad.ac.id

Article History

Received Dec 8th, 2020

Revised Dec 30th, 2020

Accepted Dec 31st, 2020

Published Dec, 2020

Abstract— Deep Learning is an essential technique in the classification problem in machine learning based on artificial neural

networks. The general issue in deep learning is data-hungry, which require a plethora of data to train some model. Wayang is a

shadow puppet art theater from Indonesia, especially in the Javanese culture. It has several indistinguishable characters. In this

paper, we tried proposing some steps and techniques on how to classify the characters and handle the issue on a small wayang dataset

by using model selection, transfer learning, and fine-tuning to obtain efficient and precise accuracy on our classification problem.

The research used 50 images for each class and a total of 24 wayang characters classes. We collected and implemented various

architectures from the initial version of deep learning to the latest proposed model and their state-of-art. The transfer learning and

fine-tuning method showed a significant increase in accuracy, validation accuracy. By using Transfer Learning, it was possible to

design the deep learning model with good classifiers within a short number of times on a small dataset. It performed 100% on their

training on both EfficientNetB0 and MobileNetV3-small. On validation accuracy, both gave 98.33% and 98.75%, respectively.

Keywords— Artificial Intelligence, Deep Learning; Fine Tuning; Transfer Learning; Wayang.

http://dx.doi.org/10.14421/ijid.2020.09207

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

101

1 INTRODUCTION

Deep Learning is an essential technique in the

classification problem in Machine Learning based on

Artificial Neural Networks. Deep learning represents the

learning method which for several years was popularly used

because of the ability to study representation in depth. It uses

multiple layers in the convolution neural network to produce

computational models.

Some Deep Convolutional Neural Network architectures

have been proposed since AlexNet [1] in 2012 that

demonstrated significant results in the ImageNet challenge.

In 2014, VGG-16 designed the deeper network [2] and

GoogLeNet with codename Inception proposed with the

dense module/blocks in their architecture [3]. In the following

year, Deep Residual Learning (ResNet) implemented the skip

connection and additionally used the batch normalization

technique [4]. Inception-ResNets combined the inception

architecture with the residual connections in 2016 [5]. In the

year that followed, Xception introduced the depthwise

convolution followed by a pointwise convolution (depthwise

separable convolution layers) [6]. In 2018, DenseNet

designed the neural network where each layer in the

convolution network is connected to every other layer,

directly [7]. NASNet, in the same year, learned the model

architectures directly on the dataset of interest. Searching on

the smaller dataset for architectural building blocks,

subsequently transfer it into the larger dataset [8]. Some

architectures were proposed for mobile and embedded vision

applications like MobileNet [9], MobileNetV2 [10], and

MobileNetV3 [11]. In 2020, EfficientNet introduced a novel

scaling method that can uniformly scale the dimension of

depth, width and resolution by using compound coefficients

[12].

The general issue in deep learning is data-hungry [13],

[14], [15]; which means that the deep learning architectures

require a plethora of data to train some models. We need to

collect lots of data for each class that wants to be modeled. It

will take many resources and times to collect and validate

some data. The issue comes when we just have unavoidable

limited data to train, is it possible to look for a model that

even trained with a small number of data for many classes,

with good accuracy within a short number of times?

Wayang or Wayang Kulit is a shadow puppet art theater

from Indonesia, especially in the Javanese culture. It is one of

the Javanese performing arts that has a great value in Javanese

society, it represents human life in the dimensions of the art

of prestige [16]. The stories of wayang have the ability to

absorb and reflect Javanese Culture due to the natural

improvisational performance by Dhalang (the master

puppeteer). Forty or fifty different characters may be required

in a single play. Each character has his own personality, voice

quality, and movement style that is related to his physical

characteristics [17]. The character of the wayang is crucial to

be studied by the current generation. It can help to

comprehend and appreciate their life, values and culture. But,

the reality in our society, especially for the younger age group

are unfamiliar with the figures of the wayang. The figures

have several indistinguishable characters from each other, if

we don’t have any knowledge of it. Therefore, the

implementation of recognizing the wayang characters are

exceptionally important to do.

Several studies on classification in wayang aspect have

been conducted like in their gamelan music pattern [18] and

emotion recognition [19]. The similar studies on the

classification of wayang characters have been performed

using Convolution Neural Network [20] and MLP with GLCP

Feature Extraction [21]. However, those studies contain

limitations that only recognize five characters with average

accuracy and require large data for each class.

Transfer learning is a key technique in Machine Learning

to overcome the fundamental problem of the insufficient

training data. It tries transferring the knowledge from the

source to the target domain by relaxing the assumption that

the training and the test data must be independent and

identically distributed (i.i.d.)[22]. Several studies showed

were able to handle this issue by using deep transfer learning

schema [23], [24] even though on small dataset [25], [26],

[27], [28].

We collected and implemented various architectures from

the initial version of deep learning to the latest proposed

model and their state-of-art. This research wants to find and

compare deep learning architectures that best fit our wayang

dataset. We tried proposing some steps and techniques on

how to classify the characters and handle the issue on a small

wayang dataset by using model selection, transfer learning,

and fine-tuning and to obtain efficient and precise accuracy

on our classification problem.

2 METHOD

This research consists of several stages like data
collection, implementation of deep learning algorithms in
training, transfer learning using pre-trained models, fine-
tuning, selection, and comparison. These stages of the
research can be seen in Figure 1.

2.1 Dataset

We collected 24 prominent characters based on a survey
that has been conducted on several people about the
popularity of wayang figures [29]. We selected the well-
known figures before collecting the data.

Figure 1. The research procedure stages

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

102

Figure 2. Example of wayang dataset with 24 character classes.

The data employed in this paper are called wayang dataset
which was taken from various sources like books [30],
websites, and free-to-use pictures from google images.

The research used 50 images for each class and a total of
24 wayang characters classes. The total combined data for
training purposes are 1200 pictures. Figure 2 illustrates the
example of the wayang dataset.

2.2 Deep Learning Architectures

Deep Learning is based on Artificial Neural Networks
(ANN) which their inspiration was adopted from biological
brain function [31]. It is composed of multiple processing
layers to learn representations of data with multiple levels of
abstraction in their computational models [32]. Deep learning
is a subset of Machine learning (ML) which is also an integral
part of Artificial Intelligence (AI). It is based on the
Convolutional Neural Network (CNN) with deep layers or
use multiple layers on their network architectures. Moreover,
It can be used in multi-label classification problems.

In this research we used 16 Deep Convolutional Neural
Network architectures in total, like AlexNet, VGG-16,
GoogLeNet, ResNet, Inception-Resnet, Xception, DenseNet
(121, 201), NASNet, MobileNet, MobileNetV2,
MobileNetV3Small, MobileNetV3Large, EfficientNetB0,

EfficientNetB2, and, EfficientNetB7. We briefly explained
each architecture of the deep learning below.

2.2.1 AlexNet
AlexNet architecture designed by Alex Krizhevsky
[1]. This is the very first deep learning architecture
that gained significant results in the ImageNet
challenge. It is the first neural-network that
implements Rectified Linear Units (ReLUs) as
activation functions. This network contained five
convolutional layers with three max pooling utilized
in the feature extraction part and three fully
connected layers with Softmax activation function
on the last network for classification.

2.2.2 VGG-16
VGG-16 developed deeper networks using small
convolutional filters (3x3). It also generalizes well
on other datasets. It consists of 16 trainable layers
which include 13 convolutional layers, max pooling,
dropout, and three fully connected layers. This
architecture was introduced by Karen Simonyan &
Andrew Zisserman [2].

2.2.3 GoogLeNet
The neural net with codename Inception used the
dense module/blocks in their architecture proposed
by C. Szegedy et al from Google Inc. [3]. It also

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

103

improved the performance inside the architecture by
allowing to increase the depth and width of the
networks. The model connected some layers in
parallel in some module/block instead of stacking
the layers. It introduced the 1x1 convolution to
reduce the feature-map dimension and also showed
the Global Average Pooling that used to decrease the
overfitting.

2.2.4 ResNet
When the network model was going deeper, it made
the training process more difficult, problems that
appeared were degradation which decreased the
accuracy of training rapidly. To handle this, Deep
Residual Learning (ResNet) implemented the skip
connection and additionally uses the batch
normalization technique. Layer with the skip
connection called Residual Block. The skip
connection allows each layer to connect the input to
their output [4].

2.2.5 Inception-ResNet
Inception-ResNets [5] combined the Inception
architecture with the Residual Block. It showed the
training with residual connection increases the
training speed in the Inception network
architectures. In this research we used the Inception-
ResNet-v2.

2.2.6 Xception
F.Chollet introduced Xception (extreme Inception)
with depthwise separable convolution operator
which a depthwise convolution followed by a
pointwise convolution to the underlying Inception
model. This architecture focused on improving the
efficient use of model parameters rather than the
increased capacity. It contained 36 convolutional
layers forming the feature extraction of the network.
Those layers were structured into 14 modules [6].

2.2.7 DenseNet
Dense Convolutional Network or DenseNet made
each layer in the convolution network connected to
every other layer, directly. This model showed a
better parameter efficiency, because it can give
comparable results with lower parameters to train.
DenseNet contains the regularizing effect which can
also reduce overfitting problems [7]. In this
research, we use the DenseNet-121 and DenseNet-
201.

2.2.8 NASNetMobile
Developing the neural network frequently requires
significant engineering technique. NASNet tried
learning the model architectures directly on the
dataset of interest. This technique was expensive on
the large data, to handle this it introduced the
searching functionality. Searching on the smaller
dataset for architectural building blocks,
subsequently transfer it into the larger dataset [8].

2.2.9 MobileNet
MobileNet presented the efficient models for mobile
and embedded vision applications. There are three
various versions of this architecture. MobileNet [9]
used the depth wise separable convolution and

initiated the two simple global hyper-parameters that
efficiently trade-off between latency and accuracy.
MobileNetV2 [10], introduced the inverted residual
with linear bottleneck between the layers. It took the
compressed lower-dimensional space (bottleneck)
as an input then expanded on the high-dimensional
space. After that, filtered using the lightweight deep
convolution, subsequently projected back to low-
dimensional space with the linear convolution.

MobileNetV3 [11] which is the next generation of
the family MobileNet architecture. The
MobileNetV3 defined into two models which are
MobileNetV3Small and MobileNetV3Large, These
models were targeted to the low and high resources
devices. It contained the hardware aware network
architecture search (NAS) and also NetAdapt
algorithm. The both techniques can be combined to
effectively find the optimal model for the hardware
platform.

2.2.10 EfficientNet
Recent study explained the scaling on depth, width
and resolution of the deep convolutional neural
network can demonstrate a better performance. It
used the compound coefficient which is the
straightforward and highly effective method in
uniform scaling. It can easily scale up a baseline
convolution network to the target resource constraint
with maintaining the efficiency [12]. In this research
we used the EfficientNetB0, EfficientNetB2, and
EfficientNetB7 versions.

2.3 Normal Training

On the Normal Training stage, we train our wayang
dataset using 16 architectures that have been pointed out. We
separated our dataset to be 80% of the images for training and
20% for validation. Therefore, it would be 960 and 240 data
respectively.

The training operated the same initial 30 epochs for all the
models, after that we used finer-control to shuffle the dataset
randomly. Next, we continued the training by adding more 30
epochs to identify the effect of the finer-control.

Finer-control represented the steps to configure the
dataset to obtain better performance. It shuffled the dataset,
created some batches, and prepared the batched data to be
available as soon as possible. The focus on this finer-control
is to make the dataset to be well shuffled. Because, the poor
shuffling would affect the accuracy of the training and
validation process.

In the selection process, we selected architecture that
demonstrated significant progress. We also separated the
models that did not show the significant increase in their
accuracy as well as the validation accuracy. The overfitting
models were also removed in this stage.

After obtaining the possible architectures that potentially
increase their accuracy, we trained more with 200 epochs to
the selected models. So, the result of these training steps
would be able to explain the behaviour of each model on this
stage.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

104

2.4 Transfer Learning

Figure 3. Schematic view of transfer learning. The weights are transferred
from the Source Domain to the Target Domain.

Transfer Learning or network-based deep transfer
learning refers to the reuse of the partial network that is pre-
trained in the source domain, including its network structure
and connection parameters, then transfer it to be a part of a
deep neural network which is used in the target domain [22].
The resulting weights parameter or pre-trained model from
the source domain subsequently used in the target domain.
Figure 3 demonstrating how the transfer learning is
performed.

For all models that we implemented, we eliminated the
fully-connected layer on the last layer which contains 1000
classes from the pre-train ImageNet. On the last layer in each
architecture, we added additional layers like a Global
Average Pooling layer and a Dense Classifier with 24
classifiers as an output. The output for each model would
contain 24 classes to perform classification.

2.4.1 Pre-Trained Imagenet
The Transfer Learning process required Pre-Trained
models to be transferred from the source to the target
domain. Each model architecture needs a unique pre-
trained model which matches their network to
perform the transfer learning process. The aim of the
transfer learning is to employ the model that has
been trained (pre-trained) using a large dataset
containing similar problems then apply it to another
task. The pre-trained models will help to make
generalization of the data.

In this research we used the ImageNet dataset [33]
for the Pre-Trained ImageNet. It contained 1.2
million images with 1000 classes. However, our
wayang dataset consisted of just 1200 images with
24 classes which means that there are insufficient
images to train in deep neural networks. Hence, we
used the pre-trained weight from ImageNet.

2.4.2 Fine-Tuning
Fine-Tuning is a way of making finer adjustments to
improve the performance and accuracy of the pre-
trained network, previously. In this research, each
model was fine-tuned directly, right after they
received the pre-trained model. In other words, the
architectures were fine-tuned from the initial of the
training or it ready to be fine-tuned from the
beginning of the training.

If we made the networks were not to be trainable,
this architecture would be a feature extraction.
However, if we constructed the network to be
trainable, it is considered as fine-tuning. We didn't
use the feature extraction in this step, because we
made the pre-trained network to be trainable on our
wayang dataset.

2.5 Compare Model

After running the training on the normal training stage and
the fine-tuning on the transfer learning stages, we received
the results of training accuracy and validation accuracy of all
the models. Furthermore, we visualized the results for each
model and tried to investigate all the architecture models. The
analysis was performed to obtain good and bad accuracy. It
also detected the model that overfitted which showed better
accuracy on the training result but worse on the validation
result.

3 RESULT AND DISCUSSION

The experiment in this study and assessment of the state-
of-art deep convolutional neural network architectures for the
wayang dataset was done. Our focus was on searching for the
best architectures that performed well on our dataset. The
result would be discussed below.

3.1 Experiment Setup

The experiments were performed on a Graphics
Processing Unit (GPU). GPU: TeslaT4, NVIDIA CUDA
2,560 cores. 13GB RAM, Intel(R) Xeon(R) CPU @ 2.20GHz
(1 core, 2 threads). Google Collab as an environment and
machine in this research (colab.research.google.com). In
addition, it uses Python as the programming language that is
reasonable and comfortable to the machine learning tasks
which also supported the number of deep learning algorithms.
This research also used Keras (keras.io) and TensorFlow
(tensorflow.org) which are simple and powerful neural
networks libraries that have lots of building blocks to create
the deep learning model architectures, this also has pre-
trained networks from ImageNet.

3.2 Result of the Normal Training

In this study, normal training and an assessment of the
deep convolutional neural network or deep learning network
architectures was done. Our focus was to select the most
significant architectures and models that potentially improve
their performance. We selected based on their accuracy and
validation accuracy measurements result.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

105

The accuracy measurement is denoted in the Eq. 1. The
value will be marked as accurate when the Predicted Value is
correctly matched with the True Value on the one-hot label.
The Accuracy is then measured by dividing the number of
accurately predicted records (TP = True Positive; TN = True
Negative) by the total number of records (TP = True
Positives; TN = True Negatives; FP = False Positives; and
FN = False Negatives).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100% (1)

The first measurements were on the first 60 epochs which
showed in Figure 4 on the left-hand side. Next, the selection
was performed which removed or didn't continue the training
for the bad performance and overfitting model. We also
reduced the color transparency on the graphic of the bad
performance architecture and only pointed out the good
architectures. It showed in Figure 4 on the right side that
illustrated the training accuracy and validation accuracy after
additional 200 epochs.

Based on the graphic in Figure 4. It was clear most of the
models had a bad validation accuracy on the first 30 epochs.
However, the training result indicated an increase in
accuracy. After the finer-control caused some effect to

several models to have increment on their validation
accuracy.

Next, each model was executed until the 60 epochs and
performed some selection stage, where removed the model
that had bad results and also overfitting. After some selection,
we got 4 good or potentially increased models. The models
were Inception-Resnet, Dense-Net-201, MobileNet,
EfficientNetB0. We plotted and highlighted the results of
those selected models in Table 1 and in Figure 4 on the right
side.

The outcome illustrated that MobileNet had the best
among the other results on the normal training stage. It
obtained an accuracy of 98.85% and 66.67% in its validation
accuracy. It also ran fastest among the other architectures
with just 6 seconds per epoch of training. But we still seek
some improvement to make enhancements on the validation
accuracy. We subsequently resumed the research by using the
transfer learning and fine-tuning technique.

Figure 4. Deep Neural Network Architectures performance (accuracy and validation accuracy),

(left) showing the first 60 epochs of training steps with the finer-control process on the 30th epoch,
(right) showing the more 200 epochs of training steps with some selection criteria

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

106

Table 1. Accuracy, validation accuracy, loss and validation loss of training and its execution time per epoch on the Normal Training stage

Model and specifications

Normal Training

60 epochs 260 epochs

Model Input shape Params
Training

accuracy%

Validation

accuracy%

Training

Loss

Validation

Loss

Training

accuracy%

Validation

accuracy%

Training

Loss

Validation

Loss

Time

~secs /epoch

Inception-

Resnet
299x299x3 54.4 M 40.83 7.50 2.8435 3.1705 93.44 55.83 2.3140 2.6957 35

DenseNet-201 224x224x3 18.4 M 18.54 13.33 3.0572 3.1103 65.52 48.33 2.5892 2.7734 17

MobileNet 224x224x3 3.3 M 77.81 34.58 2.4803 2.9101 98.85 66.67 2.2582 2.5766 6

EfficientNetB0 224x224x3 4.1 M 24.90 8.33 2.9986 3.1572 74.90 25.00 2.4983 2.9853 6.5

3.3 Result of the Transfer Learning

An assessment of Transfer Learning and Fine-Tuning
methods on Deep Learning Models for wayang dataset was
done. Our focus was to select the best performance
architecture. We selected based on the evaluation of the
models using accuracy metric and categorical cross-entropy
loss (loss).

The Accuracy metric for normal training as well as the
fine-tuning in transfer learning were calculated by using Eq.
1. The categorical cross-entropy loss (loss) was calculated
using Eq. 2 and their softmax activation function in Eq. 3.

𝐶𝐸 = − ∑ 𝑡𝑖 log(𝜎(𝑧)𝑖)

𝐶

𝑖=1

 (2)

Using Eq. 2 the categorical cross-entropy loss (loss) was
calculated as the sum of separate loss for each class. C
denotes the number of classes, t indicates the target value, and
then σ denotes the predicted value that is calculated from the
Softmax activation function is in Eq. 3 which e is the standard
exponential function and z is the input vector which
normalized into probability distribution from the last output
of the layer before applying the softmax calculation.

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐶
𝑗=1

 (3)

The optimization algorithm used on the Normal Training
and the Transfer learning + Fine-tuning was Adam
optimization. It is an algorithm of stochastic gradient descent
(SGD) optimization method based on adaptive estimation of
the first and second order moments. This optimizer has little
memory requirement, computationally efficient, and also
invariant to diagonal rescaling of gradients [34]. The equation
showed in Eq. 4.

𝜃𝑡 = 𝜃𝑡−1 −
𝛼 ⋅ �̂�𝑡

√�̂�𝑡 + 𝜖
 (4)

where:

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡 �̂�𝑡 =

𝑣𝑡

1−𝛽2
𝑡

and where:

𝑚𝑡 = 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2

and where:

𝑔𝑡 = ∇θ 𝐽(θ𝑡−1)

The gt is the gradient of the stochastic objective at time t.
Variable mt updates the bias of the first-moment estimate.
Variable vt updates the bias of the second raw moment
estimate. While m̂ compute the bias-corrected of the first
moment estimate and v̂ compute the bias-corrected of the
second raw moment estimate. β1 is the hyperparameter for the
first momentum term and β2 is the second momentum term.
The epsilon ϵ represent a small term preventing the division
by zero. Learning rate denoted as α. The hyperparameter for
this optimizer sets the parameter value of learning rate (α) =
0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e-07.

The results of the experiment are presented in Figure 5.
Each plot depicts the accuracy and entropy loss of each deep
learning architecture. But we highlighted only the good result
models. The others which are unperformed well, we turned
those to the transparent lines on the plot. After transferring
the weight and performing the fine-tuning using 60 epochs
for each model, it kept their accuracy even for more epochs.

EfficientNetB0 and MobileNetV3-Small consistently
performed the best among the other architectures. The
DenseNet family (DenseNet-121, DenseNet-201) indicated
good performance after the first two architectures. The last
one was ResNet which performed adequately well.

The Finer-Control, in addition, gave a more significant
effect on the DeseNet Family and the ResNet. It showed on
their accuracy and validation accuracy, an increased number
of the accuracy performance after the fine-controlling or
shuffling data. And equally made the best two models more
robust on their validation accuracy.

The Xception model indicated a good accuracy on the first
30 epochs, but it fell down after finer-control. It is because
the architecture was overfitting, performed well on the
training accuracy but not well on validation accuracy. Then,
we can say that fine-control was able to reveal the overfitting
model. The other models on the transparent line did not
demonstrate a significant increase in measurement and
obtained low accuracy

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

107

Table 2 shows that the training accuracy for the Transfer
Learning and Fine-Tuning model in 60 epochs can reach the
higher accuracy above 98% for the selected models. The two
most reliable models are MobileNetV3-Small and
EfficientNetB0 which both give 100% accuracy and give the
validation accuracy 98%. The second row is the family of
the DenseNet (121 and 201) demonstrating the validation
accuracy about 71%. The last is ResNet with just 57% in
their validation accuracy.

In the case of the time to training, the EfficientNetB0
shows the most rapid time with 10 seconds per epoch. Not
only performed well on the accuracy measurement, but it
also demonstrated the fastest time in the fine-tuning.
However, indeed showed a good accuracy similar to the
EfficientNet result, the MobileNetV3-Small model shows
the longest among the selected models to train which took
48 seconds per epoch.

Table 2. Accuracy, validation accuracy, loss and validation loss of training

and its execution time per epoch on the Transfer Learning stage.

Model and specifications

Transfer Learning + Fine-Tuning

60 epochs

Model Input shape Params Training accuracy% Validation accuracy% Training Loss Validation Loss Time~secs /epoch

Resnet 224x224x3 23.6 M 98.85 57.49 0.0437 3.0888 21

DenseNet-121 224x224x3 7.0 M 98.54 70.83 0.0427 1.4054 11

DenseNet-201 224x224x3 18.4 M 97.60 71.67 0.0998 1.2709 17

MobileNetV3-small 224x224x3 1.6 M 100 98.75 0.0012 0.0655 48

EfficientNetB0 224x224x3 4.0 M 100 98.33 1.58E-05 0.1717 10

Figure 5. Transfer Learning for Deep Neural Network Architectures performance,

Showing the Accuracy, Validation Accuracy, Loss and Validation Loss.

Showing the first 60 epochs of the Fine-Tuning

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

108

We continued seeing the representation of the data by
plotting it using our wayang dataset and trying to predict
using 1-fold cross validation using the best four models that
we had. The confusion matrix in Figure 7 displayed the true
data and predicted data. Based on the graphic, we would be
able to see where the model failed to predict or train the data
representation on the cross validation.

We also calculated the time for each model to predict the
dataset without performing the training, just prediction. The
evaluating the dataset total 1200 images in one run (1-fold for
all dataset) for each model need several times below to finish,
sorted based on the fastest model:

● MobileNetV3-small: (total: 31.3 s)

CPU times: user 30.5 s

sys: 755 ms

Wall time: 16.5 s

● EfficientNetB0: (total: 2min 08s)

CPU times: user 2min 6s

sys: 2.06 s

Wall time: 1min 8s

● DenseNet-121: (total: 5min 03s)

CPU times: user 5min

sys: 2.85 s

Wall time: 2min 35s

● DenseNet-201: (total: 7min 42s)

CPU times: user 7min 38s

sys: 4.42 s

Wall time: 3min 57s

At that time, we wanted to visualize how deep learning
obtained their decision by plotting using Grad-CAM [35]. It
is visual explanations on deep networks using Gradient-
Based Localization and class activation heatmap technique
for an image classification model that explains the machine
behaviour.

Figure 6. Grad-CAM class activation visualization on two characters

We investigated on the image containing two characters,
the Grad-CAM showing the ‘visual explanation’ how they
selected the left character rather than the right character. In
Figure 6 explained why the model provided the prediction
decision by plotting using this visualization technique.

3.4 Discussion

The experiment on the Normal Training stage determined
maximum accuracy on training was just 77% and under 40%
on their validation accuracy and it took a long time to train
and use more epochs.

Transfer Learning method was an effective technique to
handle the data-hungry and also increase the accuracy of the
architectures. EfficientNetB0 and MobileNetV3-small
demonstrated a remarkable result on the Transfer Learning
stage. Both models provided 100% on their training accuracy.
On validation accuracy, EfficientNetB0 and MobileNetV3-
small gave 98.33% and 98.75%, respectively.

The data-hungry issue on deep learning could be handled
by using transfer learning schema [23], [24] even though on
small dataset [25], [26], [27], [28]. Our contribution is that;
we can showed better and efficient model and more labels
classification with limited number of data rather than
previous study [20], [21]. From this research, we are able to
provide insight and comparison between models in terms of
performance and efficiency on more label classification when
facing data-hungry problems.

Moreover, if we want to produce a system that
implements the architectures which rarely update the weight
parameters and needs only to test some new data, the
MobileNetV3-small is a suitable choice, because it shows
fastest on the prediction time with a total 31.3 seconds for the
1200 data. However, if we continuously update our model
parameters, it will be better to use EfficientNetB0. Because,
it maintains an efficient time to train data with just 10
secs/epoch and additionally provides good accuracy. The
EfficientNetB0 is an effective architecture on the very
dynamic-model in the implementation that intensively
changes their weight parameters.

It is straightforward to get good accuracy on the wayang
dataset. It is due to the data just the representation of the 2D
object characteristics which means the character will remain
the same. The effect on the data when changing their pose of
the character and slightly be affected by the camera or the
environment when capturing some pictures.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

109

Figure 7. Confusion Matrix of 1-fold cross validation in wayang dataset using the selected model

4 CONCLUSION

In this study, evaluation and comparison of the Deep
Learning architectures by using the Transfer Learning and
Fine-Tuning method were performed. The total architectures
were 16 models with two different stage approaches, normal
training and transfer learning + fine-tuning.

By using Transfer Learning, it is possible to create the
deep learning model with good accuracy in a short period of
training, even using a small number of wayang dataset for
many classes on the classification problems. The Results

show that EfficientNetB0 and MobileNetV3-small
architectures demonstrated a remarkable result on the training
using the transfer learning method. Both models provided
100% on their training accuracy. On validation accuracy,
EfficientNetB0 and MobileNetV3-small gave 98.33% and
98.75%, respectively.

However, the transfer learning method contains some
limitations, because most of the models cannot be varied
widely on the test data, thus this provides lower accuracy. It
sometimes made the model overfit excessively early.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448

Vol. 9, No. 2, 2020, Pp. 100-110

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/

110

ACKNOWLEDGMENT

We would like to express our gratitude to Almarhum Ki

Seno Nugroho (ꦑꦶꦯꦺꦤꦟꦸꦒꦿꦲ) for his dedication,

devotion, and continual shift to maintain the existence of the
wayang and how he has equally performed the sacred-form
Javanese puppet art more entertaining for youth generation
for loving and appreciating their culture.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks,” 2012.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” in 3rd International Conference

on Learning Representations, ICLR 2015 - Conference Track
Proceedings, 2015.

[3] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings

of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2015, vol. 07-12-June, pp. 1–9.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2016, vol.
2016-Decem, pp. 770–778.

[5] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-ResNet and the impact of residual connections on

learning,” in 31st AAAI Conference on Artificial Intelligence, AAAI

2017, 2017, pp. 4278–4284.

[6] F. Chollet, “Xception: Deep learning with depthwise separable

convolutions,” in Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua,

pp. 1800–1807.

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,

“Densely connected convolutional networks,” in Proceedings - 30th

IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017, vol. 2017-Janua, pp. 2261–2269.

[8] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
Transferable Architectures for Scalable Image Recognition,” in

Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2018, pp. 8697–8710.

[9] A. G. Howard et al., “MobileNets: Efficient convolutional neural

networks for mobile vision applications,” arXiv. 2017.

[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in
Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2018, pp. 4510–4520.

[11] A. Howard et al., “Searching for mobileNetV3,” in Proceedings of

the IEEE International Conference on Computer Vision, 2019, vol.

2019-Octob, pp. 1314–1324.

[12] M. Tan and Q. V Le, “EfficientNet: Rethinking model scaling for

convolutional neural networks,” in 36th International Conference on
Machine Learning, ICML 2019, 2019, vol. 2019-June, pp. 10691–

10700.

[13] X. W. Chen and X. Lin, “Big data deep learning: Challenges and

perspectives,” IEEE Access, vol. 2. Institute of Electrical and

Electronics Engineers Inc., pp. 514–525, 2014.

[14] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R.
Wald, and E. Muharemagic, “Deep learning applications and

challenges in big data analytics,” J. Big Data, vol. 2, no. 1, p. 1, Dec.

2015.

[15] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A Survey of

Deep Learning and Its Applications: A New Paradigm to Machine
Learning,” Arch. Comput. Methods Eng., vol. 27, no. 4, pp. 1071–

1092, Sep. 2020.

[16] D. Sulaksono and K. Saddhono, “Ecological Concept of Wayang

Stories and the Relation with Natural Conservation in Javanese

Society,” KnE Soc. Sci., vol. 3, no. 9, p. 58, Jul. 2018.

[17] R. Long, “The movement system in Javanese wayang kulit in

relation to puppet character type: a study of Ngayogyakarta shadow

theatre,” University of Hawai’i, Ann Arbor, 1979.

[18] T. P. Tomo, A. Schmitz, G. Enriquez, S. Hashimoto, and S. Sugano,

“Wayang Robot with Gamelan Music Pattern Recognition,” J.
Robot. Mechatronics, vol. 29, no. 1, pp. 137–145, Feb. 2017.

[19] T. P. Tomo, G. Enriquez, and S. Hashimoto, “Indonesian puppet
theater robot with gamelan music emotion recognition,” in 2015

IEEE International Conference on Robotics and Biomimetics, IEEE-

ROBIO 2015, 2015, pp. 1177–1182.

[20] K. Wisnudhanti and F. Candra, “Image Classification of Pandawa

Figures Using Convolutional Neural Network on Raspberry Pi 4,” in
Journal of Physics: Conference Series, 2020, vol. 1655, no. 1, p.

12103.

[21] M. Hamdani Santoso and D. Ayu Larasati, “Wayang Image

Classification using MLP Method and GLCM Feature Extraction

Corresponding Author,” J. Comput. Sci. Inf. Technol. Telecommun.
Eng., vol. 1, no. 2, pp. 111–119, Sep. 2020.

[22] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey
on deep transfer learning,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2018, vol. 11141 LNCS, pp. 270–
279.

[23] W. Ge and Y. Yu, “Borrowing Treasures from the Wealthy: Deep
Transfer Learning through Selective Joint Fine-Tuning,” 2017.

[24] E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A comparative
study of fine-tuning deep learning models for plant disease

identification,” Comput. Electron. Agric., vol. 161, pp. 272–279, Jun.

2019.

[25] H. W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, “Deep

learning for emotion recognition on small datasets using transfer
learning,” in ICMI 2015 - Proceedings of the 2015 ACM

International Conference on Multimodal Interaction, 2015, pp. 443–

449.

[26] M. Peng, Z. Wu, Z. Zhang, and T. Chen, “From macro to micro

expression recognition: Deep learning on small datasets using
transfer learning,” in Proceedings - 13th IEEE International

Conference on Automatic Face and Gesture Recognition, FG 2018,

2018, pp. 657–661.

[27] P. Cao, S. Zhang, and J. Tang, “Preprocessing-Free Gear Fault

Diagnosis Using Small Datasets with Deep Convolutional Neural
Network-Based Transfer Learning,” IEEE Access, vol. 6, pp. 26241–

26253, May 2018.

[28] M. Shu, “Deep learning for image classification on very small

datasets using transfer learning,” Creat. Components, Jan. 2019.

[29] T. H. Haryadi and Khamadi, “Perancangan Model Wujud Visual

Tokoh Pewayangan dalam Pembentukan Identitas dan Watak Tokoh

sebagai Acuan Desain Karakter dalam Karya DKV,” DeKaVe, vol. 7,
no. 2, pp. 58–79, Jul. 2015.

[30] S. Tukul and A. I. Darodjat, Koleksi wayang kulit Museum Basoeki

Abdullah. Departemen Kebudayaan dan Pariwisata, Direktorat

Jenderal Sejarah dan Purbakala, Museum Basoeki Abdullah, 2008.

[31] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, and Z. Lin,

“Towards Biologically Plausible Deep Learning,” Feb. 2015.

[32] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.

521, no. 7553, pp. 436–444, 2015.

[33] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition

Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[34] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic

optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track Proceedings, 2015.

[35] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via

Gradient-Based Localization,” Int. J. Comput. Vis., vol. 128, no. 2,

pp. 336–359, Feb. 2020.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

