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Abstract— Deep Learning is an essential technique in the classification problem in machine learning based on artificial neural 

networks. The general issue in deep learning is data-hungry, which require a plethora of data to train some model. Wayang is a 

shadow puppet art theater from Indonesia, especially in the Javanese culture. It has several indistinguishable characters. In this 

paper, we tried proposing some steps and techniques on how to classify the characters and handle the issue on a small wayang dataset 

by using model selection, transfer learning, and fine-tuning to obtain efficient and precise accuracy on our classification problem. 

The research used 50 images for each class and a total of 24 wayang characters classes. We collected and implemented various 

architectures from the initial version of deep learning to the latest proposed model and their state-of-art. The transfer learning and 

fine-tuning method showed a significant increase in accuracy, validation accuracy. By using Transfer Learning, it was possible to 

design the deep learning model with good classifiers within a short number of times on a small dataset. It performed 100% on their 

training on both EfficientNetB0 and MobileNetV3-small. On validation accuracy, both gave 98.33% and 98.75%, respectively.  

Keywords— Artificial Intelligence, Deep Learning; Fine Tuning; Transfer Learning; Wayang. 
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1 INTRODUCTION  

Deep Learning is an essential technique in the 

classification problem in Machine Learning based on 

Artificial Neural Networks. Deep learning represents the 

learning method which for several years was popularly used 

because of the ability to study representation in depth. It uses 

multiple layers in the convolution neural network to produce 

computational models. 

Some Deep Convolutional Neural Network architectures 

have been proposed since AlexNet [1] in 2012 that 

demonstrated significant results in the ImageNet challenge. 

In 2014, VGG-16 designed the deeper network [2] and 

GoogLeNet with codename Inception proposed with the 

dense module/blocks in their architecture [3]. In the following 

year, Deep Residual Learning (ResNet) implemented the skip 

connection and additionally used the batch normalization 

technique [4]. Inception-ResNets combined the inception 

architecture with the residual connections in 2016 [5]. In the 

year that followed, Xception introduced the depthwise 

convolution followed by a pointwise convolution (depthwise 

separable convolution layers) [6]. In 2018, DenseNet 

designed the neural network where each layer in the 

convolution network is connected to every other layer, 

directly [7]. NASNet, in the same year, learned the model 

architectures directly on the dataset of interest. Searching on 

the smaller dataset for architectural building blocks, 

subsequently transfer it into the larger dataset [8]. Some 

architectures were proposed for mobile and embedded vision 

applications like MobileNet [9], MobileNetV2 [10], and  

MobileNetV3 [11]. In 2020, EfficientNet introduced a novel 

scaling method that can uniformly scale the dimension of 

depth, width and resolution by using compound coefficients 

[12]. 

The general issue in deep learning is data-hungry [13], 

[14], [15]; which means that the deep learning architectures 

require a plethora of data to train some models. We need to 

collect lots of data for each class that wants to be modeled. It 

will take many resources and times to collect and validate 

some data. The issue comes when we just have unavoidable 

limited data to train, is it possible to look for a model that 

even trained with a small number of data for many classes, 

with good accuracy within a short number of times? 

Wayang or Wayang Kulit is a shadow puppet art theater 

from Indonesia, especially in the Javanese culture. It is one of 

the Javanese performing arts that has a great value in Javanese 

society, it represents human life in the dimensions of the art 

of prestige [16]. The stories of wayang have the ability to 

absorb and reflect Javanese Culture due to the natural 

improvisational performance by Dhalang (the master 

puppeteer). Forty or fifty different characters may be required 

in a single play. Each character has his own personality, voice 

quality, and movement style that is related to his physical 

characteristics [17]. The character of the wayang is crucial to 

be studied by the current generation. It can help to 

comprehend and appreciate their life, values and culture. But, 

the reality in our society, especially for the younger age group 

are unfamiliar with the figures of the wayang. The figures 

have several indistinguishable characters from each other, if 

we don’t have any knowledge of it. Therefore, the 

implementation of recognizing the wayang characters are 

exceptionally important to do.  

Several studies on classification in wayang aspect have 

been conducted like in their gamelan music pattern [18] and 

emotion recognition [19]. The similar studies on the 

classification of wayang characters have been performed 

using Convolution Neural Network [20] and MLP with GLCP 

Feature Extraction [21]. However, those studies contain 

limitations that only recognize five characters with average 

accuracy and require large data for each class. 

Transfer learning is a key technique in Machine Learning 

to overcome the fundamental problem of the insufficient 

training data. It tries transferring the knowledge from the 

source to the target domain by relaxing the assumption that 

the training and the test data must be independent and 

identically distributed (i.i.d.)[22]. Several studies showed 

were able to handle this issue by using deep transfer learning 

schema [23], [24] even though on small dataset [25], [26], 

[27], [28]. 

We collected and implemented various architectures from 

the initial version of deep learning to the latest proposed 

model and their state-of-art. This research wants to find and 

compare deep learning architectures that best fit our wayang 

dataset. We tried proposing some steps and techniques on 

how to classify the characters and handle the issue on a small 

wayang dataset by using model selection, transfer learning, 

and fine-tuning and to obtain efficient and precise accuracy 

on our classification problem. 

 

2 METHOD 

This research consists of several stages like data 
collection, implementation of deep learning algorithms in 
training, transfer learning using pre-trained models, fine-
tuning, selection, and comparison. These stages of the 
research can be seen in Figure 1. 

2.1 Dataset 

We collected 24 prominent characters based on a survey 
that has been conducted on several people about the 
popularity of wayang figures [29]. We selected the well-
known figures before collecting the data. 

 

Figure 1.  The research procedure stages 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 2.  Example of wayang dataset with 24 character classes.

The data employed in this paper are called wayang dataset 
which was taken from various sources like books [30], 
websites, and free-to-use pictures from google images.  

The research used 50 images for each class and a total of 
24 wayang characters classes. The total combined data for 
training purposes are 1200 pictures. Figure 2 illustrates the 
example of the wayang dataset. 

 

2.2 Deep Learning Architectures 

Deep Learning is based on Artificial Neural Networks 
(ANN) which their inspiration was adopted from biological 
brain function [31]. It is composed of multiple processing 
layers to learn representations of data with multiple levels of 
abstraction in their computational models [32]. Deep learning 
is a subset of Machine learning (ML) which is also an integral 
part of Artificial Intelligence (AI). It is based on the 
Convolutional Neural Network (CNN) with deep layers or 
use multiple layers on their network architectures. Moreover, 
It can be used in multi-label classification problems. 

In this research we used 16 Deep Convolutional Neural 
Network architectures in total, like AlexNet, VGG-16, 
GoogLeNet, ResNet, Inception-Resnet, Xception, DenseNet 
(121, 201), NASNet, MobileNet, MobileNetV2, 
MobileNetV3Small, MobileNetV3Large, EfficientNetB0, 

EfficientNetB2, and, EfficientNetB7. We briefly explained 
each architecture of the deep learning below. 

2.2.1 AlexNet 
AlexNet architecture designed by Alex Krizhevsky 
[1]. This is the very first deep learning architecture 
that gained significant results in the ImageNet 
challenge. It is the first neural-network that 
implements Rectified Linear Units (ReLUs) as 
activation functions. This network contained five 
convolutional layers with three max pooling utilized 
in the feature extraction part and three fully 
connected layers with Softmax activation function 
on the last network for classification. 

2.2.2 VGG-16 
VGG-16 developed deeper networks using small 
convolutional filters (3x3). It also generalizes well 
on other datasets. It consists of 16 trainable layers 
which include 13 convolutional layers, max pooling, 
dropout, and three fully connected layers. This 
architecture was introduced by Karen Simonyan & 
Andrew Zisserman [2]. 

2.2.3 GoogLeNet 
The neural net with codename Inception used the 
dense module/blocks in their architecture proposed 
by C. Szegedy et al from Google Inc. [3]. It also 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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improved the performance inside the architecture by 
allowing to increase the depth and width of the 
networks. The model connected some layers in 
parallel in some module/block instead of stacking 
the layers. It introduced the 1x1 convolution to 
reduce the feature-map dimension and also showed 
the Global Average Pooling that used to decrease the 
overfitting.   

2.2.4 ResNet 
When the network model was going deeper, it made 
the training process more difficult, problems that 
appeared were degradation which decreased the 
accuracy of training rapidly. To handle this, Deep 
Residual Learning (ResNet) implemented the skip 
connection and additionally uses the batch 
normalization technique. Layer with the skip 
connection called Residual Block. The skip 
connection allows each layer to connect the input to 
their output [4].  

2.2.5 Inception-ResNet 
Inception-ResNets [5] combined the Inception 
architecture with the Residual Block. It showed the 
training with residual connection increases the 
training speed in the Inception network 
architectures. In this research we used the Inception-
ResNet-v2. 

2.2.6 Xception 
F.Chollet introduced Xception (extreme Inception) 
with depthwise separable convolution operator 
which a depthwise convolution followed by a 
pointwise convolution to the underlying Inception 
model. This architecture focused on improving the 
efficient use of model parameters rather than the 
increased capacity. It contained 36 convolutional 
layers forming the feature extraction of the network. 
Those layers were structured into 14 modules [6]. 

2.2.7 DenseNet 
Dense Convolutional Network or DenseNet made 
each layer in the convolution network connected to 
every other layer, directly. This model showed a 
better parameter efficiency, because it can give 
comparable results with lower parameters to train. 
DenseNet contains the regularizing effect which can 
also reduce overfitting problems [7]. In this 
research, we use the DenseNet-121 and DenseNet-
201. 

2.2.8 NASNetMobile 
Developing the neural network frequently requires 
significant engineering technique. NASNet tried 
learning the model architectures directly on the 
dataset of interest. This technique was expensive on 
the large data, to handle this it introduced the 
searching functionality. Searching on the smaller 
dataset for architectural building blocks, 
subsequently transfer it into the larger dataset [8]. 

2.2.9 MobileNet  
MobileNet presented the efficient models for mobile 
and embedded vision applications. There are three 
various versions of this architecture. MobileNet [9] 
used the depth wise separable convolution and 

initiated the two simple global hyper-parameters that 
efficiently trade-off between latency and accuracy. 
MobileNetV2 [10], introduced the inverted residual 
with linear bottleneck between the layers. It took the 
compressed lower-dimensional space (bottleneck) 
as an input then expanded on the high-dimensional 
space. After that, filtered using the lightweight deep 
convolution, subsequently projected back to low-
dimensional space with the linear convolution.  

MobileNetV3 [11] which is the next generation of 
the family MobileNet architecture. The 
MobileNetV3 defined into two models which are 
MobileNetV3Small and MobileNetV3Large, These 
models were targeted to the low and high resources 
devices. It contained the hardware aware network 
architecture search (NAS) and also NetAdapt 
algorithm. The both techniques can be combined to 
effectively find the optimal model for the hardware 
platform. 

2.2.10 EfficientNet 
Recent study explained the scaling on depth, width 
and resolution of the deep convolutional neural 
network can demonstrate a better performance. It 
used the compound coefficient which is the 
straightforward and highly effective method in 
uniform scaling. It can easily scale up a baseline 
convolution network to the target resource constraint 
with maintaining the efficiency [12]. In this research 
we used the EfficientNetB0, EfficientNetB2, and 
EfficientNetB7 versions. 

 

2.3 Normal Training 

On the Normal Training stage, we train our wayang 
dataset using 16 architectures that have been pointed out. We 
separated our dataset to be 80% of the images for training and 
20% for validation. Therefore, it would be 960 and 240 data 
respectively. 

The training operated the same initial 30 epochs for all the 
models, after that we used finer-control to shuffle the dataset 
randomly. Next, we continued the training by adding more 30 
epochs to identify the effect of the finer-control. 

Finer-control represented the steps to configure the 
dataset to obtain better performance. It shuffled the dataset, 
created some batches, and prepared the batched data to be 
available as soon as possible. The focus on this finer-control 
is to make the dataset to be well shuffled. Because, the poor 
shuffling would affect the accuracy of the training and 
validation process. 

In the selection process, we selected architecture that 
demonstrated significant progress. We also separated the 
models that did not show the significant increase in their 
accuracy as well as the validation accuracy. The overfitting 
models were also removed in this stage. 

After obtaining the possible architectures that potentially 
increase their accuracy, we trained more with 200 epochs to 
the selected models. So, the result of these training steps 
would be able to explain the behaviour of each model on this 
stage. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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2.4 Transfer Learning 

 

Figure 3.  Schematic view of transfer learning. The weights are transferred 
from the Source Domain to the Target Domain. 

 

Transfer Learning or network-based deep transfer 
learning refers to the reuse of the partial network that is pre-
trained in the source domain, including its network structure 
and connection parameters, then transfer it to be a part of a 
deep neural network which is used in the target domain [22]. 
The resulting weights parameter or pre-trained model from 
the source domain subsequently used in the target domain. 
Figure 3 demonstrating how the transfer learning is 
performed.  

For all models that we implemented, we eliminated the 
fully-connected layer on the last layer which contains 1000 
classes from the pre-train ImageNet. On the last layer in each 
architecture, we added additional layers like a Global 
Average Pooling layer and a Dense Classifier with 24 
classifiers as an output. The output for each model would 
contain 24 classes to perform classification.  

2.4.1 Pre-Trained Imagenet 
The Transfer Learning process required Pre-Trained 
models to be transferred from the source to the target 
domain. Each model architecture needs a unique pre-
trained model which matches their network to 
perform the transfer learning process. The aim of the 
transfer learning is to employ the model that has 
been trained (pre-trained) using a large dataset 
containing similar problems then apply it to another 
task. The pre-trained models will help to make 
generalization of the data. 

In this research we used the ImageNet dataset [33] 
for the Pre-Trained ImageNet. It contained 1.2 
million images with 1000 classes. However, our 
wayang dataset consisted of just 1200 images with 
24 classes which means that there are insufficient 
images to train in deep neural networks. Hence, we 
used the pre-trained weight from ImageNet. 

2.4.2 Fine-Tuning 
Fine-Tuning is a way of making finer adjustments to 
improve the performance and accuracy of the pre-
trained network, previously. In this research, each 
model was fine-tuned directly, right after they 
received the pre-trained model. In other words, the 
architectures were fine-tuned from the initial of the 
training or it ready to be fine-tuned from the 
beginning of the training.  

If we made the networks were not to be trainable, 
this architecture would be a feature extraction. 
However, if we constructed the network to be 
trainable, it is considered as fine-tuning. We didn't 
use the feature extraction in this step, because we 
made the pre-trained network to be trainable on our 
wayang dataset. 

 

2.5 Compare Model 

After running the training on the normal training stage and 
the fine-tuning on the transfer learning stages, we received 
the results of training accuracy and validation accuracy of all 
the models. Furthermore, we visualized the results for each 
model and tried to investigate all the architecture models. The 
analysis was performed to obtain good and bad accuracy. It 
also detected the model that overfitted which showed better 
accuracy on the training result but worse on the validation 
result.  

 

3 RESULT AND DISCUSSION 

The experiment in this study and assessment of the state-
of-art deep convolutional neural network architectures for the 
wayang dataset was done. Our focus was on searching for the 
best architectures that performed well on our dataset. The 
result would be discussed below. 

 

3.1 Experiment Setup 

The experiments were performed on a Graphics 
Processing Unit (GPU). GPU: TeslaT4, NVIDIA CUDA 
2,560 cores. 13GB RAM, Intel(R) Xeon(R) CPU @ 2.20GHz 
(1 core, 2 threads). Google Collab as an environment and 
machine in this research (colab.research.google.com). In 
addition, it uses Python as the programming language that is 
reasonable and comfortable to the machine learning tasks 
which also supported the number of deep learning algorithms. 
This research also used Keras (keras.io) and TensorFlow 
(tensorflow.org) which are simple and powerful neural 
networks libraries that have lots of building blocks to create 
the deep learning model architectures, this also has pre-
trained networks from ImageNet. 

 

3.2 Result of the Normal Training 

In this study, normal training and an assessment of the 
deep convolutional neural network or deep learning network 
architectures was done. Our focus was to select the most 
significant architectures and models that potentially improve 
their performance. We selected based on their accuracy and 
validation accuracy measurements result. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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The accuracy measurement is denoted in the Eq. 1. The 
value will be marked as accurate when the Predicted Value is 
correctly matched with the True Value on the one-hot label. 
The Accuracy is then measured by dividing the number of 
accurately predicted records (TP = True Positive; TN = True 
Negative) by the total number of records (TP = True 
Positives; TN = True Negatives; FP = False Positives; and 
FN = False Negatives). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 ×  100%           (1) 

The first measurements were on the first 60 epochs which 
showed in Figure 4 on the left-hand side. Next, the selection 
was performed which removed or didn't continue the training 
for the bad performance and overfitting model. We also 
reduced the color transparency on the graphic of the bad 
performance architecture and only pointed out the good 
architectures. It showed in Figure 4 on the right side that 
illustrated the training accuracy and validation accuracy after 
additional 200 epochs. 

Based on the graphic in Figure 4. It was clear most of the 
models had a bad validation accuracy on the first 30 epochs. 
However, the training result indicated an increase in 
accuracy. After the finer-control caused some effect to 

several models to have increment on their validation 
accuracy.  

Next, each model was executed until the 60 epochs and 
performed some selection stage, where removed the model 
that had bad results and also overfitting. After some selection, 
we got 4 good or potentially increased models. The models 
were Inception-Resnet, Dense-Net-201, MobileNet, 
EfficientNetB0. We plotted and highlighted the results of 
those selected models in Table 1 and in Figure 4 on the right 
side. 

The outcome illustrated that MobileNet had the best 
among the other results on the normal training stage. It 
obtained an accuracy of 98.85% and 66.67% in its validation 
accuracy. It also ran fastest among the other architectures 
with just 6 seconds per epoch of training. But we still seek 
some improvement to make enhancements on the validation 
accuracy. We subsequently resumed the research by using the 
transfer learning and fine-tuning technique. 

 

 

 

 

 
Figure 4. Deep Neural Network Architectures performance (accuracy and validation accuracy),  

(left) showing the first 60 epochs of training steps with the finer-control process on the 30th epoch,  
(right) showing the more 200 epochs of training steps with some selection criteria 
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Table 1. Accuracy, validation accuracy, loss and validation loss of training and its execution time per epoch on the Normal Training stage 

Model and specifications 

Normal Training 

60 epochs 260 epochs 

Model Input shape Params 
Training 

accuracy% 

Validation 

accuracy% 

Training 

Loss 

Validation 

Loss 

Training 

accuracy% 

Validation 

accuracy% 

Training 

Loss 

Validation 

Loss 

Time 

~secs /epoch 

Inception-

Resnet 
299x299x3 54.4 M 40.83 7.50 2.8435 3.1705 93.44 55.83 2.3140 2.6957 35 

DenseNet-201 224x224x3 18.4 M 18.54 13.33 3.0572 3.1103 65.52 48.33 2.5892 2.7734 17 

MobileNet 224x224x3 3.3 M 77.81 34.58 2.4803 2.9101 98.85 66.67 2.2582 2.5766 6 

EfficientNetB0 224x224x3 4.1 M 24.90 8.33 2.9986 3.1572 74.90 25.00 2.4983 2.9853 6.5 

 

3.3 Result of the Transfer Learning 

An assessment of Transfer Learning and Fine-Tuning 
methods on Deep Learning Models for wayang dataset was 
done. Our focus was to select the best performance 
architecture. We selected based on the evaluation of the 
models using accuracy metric and categorical cross-entropy 
loss (loss).  

The Accuracy metric for normal training as well as the 
fine-tuning in transfer learning were calculated by using Eq. 
1. The categorical cross-entropy loss (loss) was calculated 
using Eq. 2 and their softmax activation function in Eq. 3.  

𝐶𝐸 =  − ∑ 𝑡𝑖 log(𝜎(𝑧)𝑖)

𝐶

𝑖=1

                             (2) 

Using Eq. 2 the categorical cross-entropy loss (loss) was 
calculated as the sum of separate loss for each class. C 
denotes the number of classes, t indicates the target value, and 
then σ denotes the predicted value that is calculated from the 
Softmax activation function is in Eq. 3 which e is the standard 
exponential function and z is the input vector which 
normalized into probability distribution from the last output 
of the layer before applying the softmax calculation. 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐶
𝑗=1

                             (3) 

The optimization algorithm used on the Normal Training 
and the Transfer learning + Fine-tuning was Adam 
optimization. It is an algorithm of stochastic gradient descent 
(SGD) optimization method based on adaptive estimation of 
the first and second order moments. This optimizer has little 
memory requirement, computationally efficient, and also 
invariant to diagonal rescaling of gradients [34]. The equation 
showed in Eq. 4.  

𝜃𝑡 =  𝜃𝑡−1 −  
𝛼 ⋅ �̂�𝑡

√�̂�𝑡 + 𝜖
                       (4) 

where: 

�̂�𝑡 =  
𝑚𝑡

1−𝛽1
𝑡         �̂�𝑡 =  

𝑣𝑡

1−𝛽2
𝑡 

and where:  

𝑚𝑡 =  𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡 

𝑣𝑡 =  𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2 

and where: 

𝑔𝑡 = ∇θ 𝐽(θ𝑡−1) 

The gt is the gradient of the stochastic objective at time t. 
Variable mt updates the bias of the first-moment estimate. 
Variable vt updates the bias of the second raw moment 
estimate. While m̂ compute the bias-corrected of the first 
moment estimate and v̂ compute the bias-corrected of the 
second raw moment estimate. β1 is the hyperparameter for the 
first momentum term and β2 is the second momentum term. 
The epsilon ϵ represent a small term preventing the division 
by zero. Learning rate denoted as α. The hyperparameter for 
this optimizer sets the parameter value of learning rate (α) = 
0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e-07. 

The results of the experiment are presented in Figure 5. 
Each plot depicts the accuracy and entropy loss of each deep 
learning architecture. But we highlighted only the good result 
models. The others which are unperformed well, we turned 
those to the transparent lines on the plot. After transferring 
the weight and performing the fine-tuning using 60 epochs 
for each model, it kept their accuracy even for more epochs.  

EfficientNetB0 and MobileNetV3-Small consistently 
performed the best among the other architectures. The 
DenseNet family (DenseNet-121, DenseNet-201) indicated 
good performance after the first two architectures. The last 
one was ResNet which performed adequately well. 

The Finer-Control, in addition, gave a more significant 
effect on the DeseNet Family and the ResNet. It showed on 
their accuracy and validation accuracy, an increased number 
of the accuracy performance after the fine-controlling or 
shuffling data. And equally made the best two models more 
robust on their validation accuracy. 

The Xception model indicated a good accuracy on the first 
30 epochs, but it fell down after finer-control. It is because 
the architecture was overfitting, performed well on the 
training accuracy but not well on validation accuracy. Then, 
we can say that fine-control was able to reveal the overfitting 
model. The other models on the transparent line did not 
demonstrate a significant increase in measurement and 
obtained low accuracy 
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Table 2 shows that the training accuracy for the Transfer 
Learning and Fine-Tuning model in 60 epochs can reach the 
higher accuracy above 98% for the selected models. The two 
most reliable models are MobileNetV3-Small and 
EfficientNetB0 which both give 100% accuracy and give the 
validation accuracy 98%. The second row is the family of 
the DenseNet (121 and 201) demonstrating the validation 
accuracy about 71%. The last is ResNet with just 57% in 
their validation accuracy. 

In the case of the time to training, the EfficientNetB0 
shows the most rapid time with 10 seconds per epoch. Not 
only performed well on the accuracy measurement, but it 
also demonstrated the fastest time in the fine-tuning. 
However, indeed showed a good accuracy similar to the 
EfficientNet result, the MobileNetV3-Small model shows 
the longest among the selected models to train which took 
48 seconds per epoch.

 

Table 2. Accuracy, validation accuracy, loss and validation loss of training  

and its execution time per epoch on the Transfer Learning stage. 

Model and specifications 

Transfer Learning + Fine-Tuning 

60 epochs 

Model Input shape Params Training accuracy% Validation  accuracy% Training Loss Validation Loss Time~secs /epoch 

Resnet 224x224x3 23.6 M 98.85 57.49 0.0437 3.0888 21 

DenseNet-121 224x224x3 7.0 M 98.54 70.83 0.0427 1.4054 11 

DenseNet-201 224x224x3 18.4 M 97.60 71.67 0.0998 1.2709 17 

MobileNetV3-small 224x224x3 1.6 M 100 98.75 0.0012 0.0655 48 

EfficientNetB0 224x224x3 4.0 M 100 98.33 1.58E-05 0.1717 10 

 
Figure 5. Transfer Learning for Deep Neural Network Architectures performance, 

Showing the Accuracy, Validation Accuracy, Loss and Validation Loss. 

Showing the first 60 epochs of the Fine-Tuning 
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We continued seeing the representation of the data by 
plotting it using our wayang dataset and trying to predict 
using 1-fold cross validation using the best four models that 
we had. The confusion matrix in Figure 7 displayed the true 
data and predicted data. Based on the graphic, we would be 
able to see where the model failed to predict or train the data 
representation on the cross validation. 

We also calculated the time for each model to predict the 
dataset without performing the training, just prediction. The 
evaluating the dataset total 1200 images in one run (1-fold for 
all dataset) for each model need several times below to finish, 
sorted based on the fastest model: 

● MobileNetV3-small: (total: 31.3 s) 

CPU times: user 30.5 s 

sys: 755 ms 

Wall time: 16.5 s 

● EfficientNetB0: (total: 2min 08s) 

CPU times: user 2min 6s 

sys: 2.06 s 

Wall time: 1min 8s 

● DenseNet-121: (total: 5min 03s) 

CPU times: user 5min  

sys: 2.85 s 

Wall time: 2min 35s 

● DenseNet-201: (total: 7min 42s) 

CPU times: user 7min 38s  

sys: 4.42 s 

Wall time: 3min 57s 

At that time, we wanted to visualize how deep learning 
obtained their decision by plotting using Grad-CAM [35]. It 
is visual explanations on deep networks using Gradient-
Based Localization and class activation heatmap technique 
for an image classification model that explains the machine 
behaviour.  

 

 

Figure 6. Grad-CAM class activation visualization on two characters 

We investigated on the image containing two characters, 
the Grad-CAM showing the ‘visual explanation’ how they 
selected the left character rather than the right character. In 
Figure 6 explained why the model provided the prediction 
decision by plotting using this visualization technique. 

 

3.4 Discussion 

The experiment on the Normal Training stage determined 
maximum accuracy on training was just 77% and under 40% 
on their validation accuracy and it took a long time to train 
and use more epochs.  

Transfer Learning method was an effective technique to 
handle the data-hungry and also increase the accuracy of the 
architectures. EfficientNetB0 and MobileNetV3-small 
demonstrated a remarkable result on the Transfer Learning 
stage. Both models provided 100% on their training accuracy. 
On validation accuracy, EfficientNetB0 and MobileNetV3-
small gave 98.33% and 98.75%, respectively. 

The data-hungry issue on deep learning could be handled 
by using transfer learning schema [23], [24] even though on 
small dataset [25], [26], [27], [28]. Our contribution is that; 
we can showed better and efficient model and more labels 
classification with limited number of data rather than 
previous study [20], [21]. From this research, we are able to 
provide insight and comparison between models in terms of 
performance and efficiency on more label classification when 
facing data-hungry problems. 

Moreover, if we want to produce a system that 
implements the architectures which rarely update the weight 
parameters and needs only to test some new data, the 
MobileNetV3-small is a suitable choice, because it shows 
fastest on the prediction time with a total 31.3 seconds for the 
1200 data. However, if we continuously update our model 
parameters, it will be better to use EfficientNetB0. Because, 
it maintains an efficient time to train data with just 10 
secs/epoch and additionally provides good accuracy. The 
EfficientNetB0 is an effective architecture on the very 
dynamic-model in the implementation that intensively 
changes their weight parameters. 

It is straightforward to get good accuracy on the wayang 
dataset. It is due to the data just the representation of the 2D 
object characteristics which means the character will remain 
the same. The effect on the data when changing their pose of 
the character and slightly be affected by the camera or the 
environment when capturing some pictures. 
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Figure 7. Confusion Matrix of 1-fold cross validation in wayang dataset using the selected model 

 

4 CONCLUSION 

In this study, evaluation and comparison of the Deep 
Learning architectures by using the Transfer Learning and 
Fine-Tuning method were performed. The total architectures 
were 16 models with two different stage approaches, normal 
training and transfer learning + fine-tuning.  

By using Transfer Learning, it is possible to create the 
deep learning model with good accuracy in a short period of 
training, even using a small number of wayang dataset for 
many classes on the classification problems. The Results 

show that EfficientNetB0 and MobileNetV3-small 
architectures demonstrated a remarkable result on the training 
using the transfer learning method. Both models provided 
100% on their training accuracy. On validation accuracy, 
EfficientNetB0 and MobileNetV3-small gave 98.33% and 
98.75%, respectively. 

However, the transfer learning method contains some 
limitations, because most of the models cannot be varied 
widely on the test data, thus this provides lower accuracy. It 
sometimes made the model overfit excessively early. 
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