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Abstract— Image classification is a fundamental task in vision recognition that aims to understand and categorize an image under a 

specific label. Image classification needs to produce a quick, economical, and reliable result. Convolutional Neural Networks (CNN) have 

proven effective for image analysis. However, problems arise due to factors such as the model’s quality, unbalanced training data, 

overfitting, and layers’ complexity. ResNet50 is a transfer learning-based convolutional neural network model frequently used in many 

areas, including Lepidopterology. Studies have shown that ResNet50 performs with lower accuracy than other models for classifying 

butterflies. Therefore, this study aims to optimise the accuracy of ResNet50 using an augmentation approach and ensemble deep learning 

for butterfly image classification. This study used a public dataset of butterflies from Kaggle. The dataset contains 75 different butterfly 

species, 9.285 training images, 375 testing images, and 375 validation images. A sequence of transformation functions was applied. The 

ensemble deep learning was constructed by incorporating ResNet50 with CNN. To measure ResNet50 optimisation, the experimental 

results of the original dataset and the proposed methods were compared and analysed using evaluation metrics. The research revealed 

that the proposed method provided better performance with an accuracy of 95%. 

Keywords— Butterfly; CNN; data augmentation; ensemble deep learning; ResNet50 
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1 INTRODUCTION 

Along with moths, butterflies are insects belonging to the 
order of Lepidoptera. The world population of butterfly 
species is approximately 21,000 [1]. The existence of 
butterflies is crucial for maintaining ecosystem balance and 
enriching biodiversity [2]. Butterflies are not only natural 
pollinators for plants but also bioindicators of environmental 
change [3]–[5]. The extinction of butterflies in nature may 
indicate polluted environmental conditions [6], [7]. The wing 
pattern of a butterfly, including colour, wing shape, and 
eyespot size may evolve independently because of 
environmental cues [8]. This underscores the importance of 
studying butterflies as a means to understand and monitor the 
environment. However, the current classification of butterfly 
species is still based on the traditional method, in which 
butterflies are caught using insect nets  [3], [9], [10]. This 
approach, unfortunately, grapples with challenges such as 
low accuracy and slow recognition due to the vast diversity 
of species, their striking similarities, and the lack of evident 
characteristics for clear differentiation [11]. Other 
weaknesses for traditional method are extended observation 
duration, low accuracy because many butterflies have similar 
or identical shapes that are sometimes difficult to distinguish, 
high cost, limited availability of taxonomists, and the risk of 
butterfly extinction [11], [12]. The other challenges to study 
computer vision algorithms for butterfly identification 
species are entomologists’ difficulty in gathering the butterfly 
dataset, prolonged process of butterfly identification, and the 
incomplete dataset in terms of the number of butterfly species 
included. Moreover, the photographs of butterflies utilized 
for training were all pattern images with clear morphological 
characteristics, and they did not include any images of 
butterflies in their natural habitat. There are clear variations 
between the two images, making it challenging to combine 
manufacturing and research resulting in low identification 
accuracy [11]. With all these shortages, deep learning can 
help scientists or taxonomists analyse the butterfly images 
faster and more efficiently, automatically, and inexpensively. 
It allows for optimal identification accuracy without 
annihilating the population of butterflies’ cause of capturing. 

One of the most popular methods and a breakthrough in 
the field of image classification is Convolutional Neural 
Network (CNN) [13]. It is a multi-layer neural network model 
or deep learning architecture inspired by how the human brain 
works. The primary benefit of CNNs over earlier techniques 
is their capacity to automatically extract the most pertinent 
characteristics of the patterns of our selected pictures, 
eliminating the need for human feature extraction [14]. 
Typically, there are four layers making up the CNN 
architecture: the input layer, convolution layer, pooling layer, 
and fully connected layer [15]. Although CNN is the most 
widely used method in image classification, in its 
implementation, there are common problems such as 
imbalanced training data, overfitting, and the complexity of 
the layers, which lead to a long duration of the model training. 
To solve these problems, a simple CNN architecture is 
required [16]. Other options include the use of data 
augmentation approach and transfer learning techniques to 
solve the problems at CNN. Data augmentation allows the 
size of training datasets to become more complex by adding 
additional parameters such as cropping, horizontal flipping, 

rescaling, shear range, fill mode, rotation range, height shift, 
and width shift [1], [17]. Transfer learning is a method that 
uses a CNN model that has already been trained, also known 
as a pre-trained model [18]. In addition to the three techniques 
mentioned above (simple CNN, data augmentation, and 
transfer learning), there is a combination of several models 
called ensemble deep learning [19]. It can create better 
predictive models than just one model [20]. 

Transfer learning architectures have been used in 
several previous butterfly classification studies: the Inception 
V3, VGG19, VGG16, Xception, ResNet50, GoogLeNet, 
MobileNet, and LeNet architectures [1], [19]–[22]. Research 
[21] showed an accuracy of 79.5% for VGG16, 77.2% for 
VGG19, and 70.2% for ResNet50. The experiments did not 
involve any data augmentation. Other research using a data 
augmentation approach found 94.66% accuracy for 
InceptionV3, 92% for VGG19, 86.66% for VGG16, 87.99% 
for Xception, 81.33% for MobileNet, and 43.99% for 
ResNet50. Another study [20] found an accuracy of 97.5% 
for GoogleNet architecture. In addition, the data 
augmentation approach was also used by Prudhivi et al. [22]. 
The study using the VGG16, ResNet50, Inception V3, and 
MobileNet architectures resulted in consecutive accuracies of 
86%, 53%, 95%, and 93%, respectively. Research [23] also 
used the VGG16 architecture and showed an accuracy of 93% 
and 67% for LeNet. The above research shows that data 
augmentation impacts accuracy. It was also found that the 
ResNet50 accuracy in butterfly classification research is the 
lowest compared with other architectures. 

Based on the above issues, this research aims to improve 
the low accuracy of the ResNet50 architecture in butterfly 
classification. This study attempts to use two scenarios to 
perform ResNet50 optimisation of butterfly classification. 
The first scenario is to change the parameters in the data 
augmentation using the image data generator on the Keras 
framework for the following functions: image rotation, 
epsilon-zca brightening, fill mode, shear range, zoom range, 
horizontal rotation, width and height shift range, and last 
channel shift range. The second plan is to combine the 
ResNet50 architecture with a simple CNN architecture called 
Ensemble Deep Learning. Previous studies have shown that 
ensemble deep learning can achieve higher accuracy in image 
classification than a single model  [20], [24]. Therefore, this 
research attempts to adapt it. 

 

2 METHOD 

2.1. Methodology Workflow 

This part briefly explains the tool specifications and 
research flow. Fig. 1 depicts the methodology workflow. The 
workflow starts with collecting butterfly image datasets and 
then follows two scenarios: pre-processing (with data 
augmentation) and without pre-processing (without data 
augmentation). Both data are then applied to train the 
proposed models for training and validation. These are 
Resnet50, CNN, and the ensemble model. The trained 
model's performance was then examined further using 
accuracy scores and evaluation measures. The tool used to 
train the proposed model was the same device; therefore, no 
hardware factors affected the outcome of the study. The 
specifications of the device are listed in Table 1. 
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Figure 1. The methodology workflow 

 
Table 1. Tools Details 

Type Detail type 

Hardware Processor Intel(R) Core (TM) i7-7500U with CPU 

@2.70GHz 2.90 GHz and RAM 8 GB NVIDIA GeForce 

MX150 

Software Windows 10 Home with version of Single Language 22H2, 

and Google Collaboratory 

Language Python 3 

 

2.2. Dataset Description 

The datasets of butterfly images in this research were 
obtained from the Kaggle public dataset. The URL was 
https://www.kaggle.com/datasets/gpiosenka/butterflyimages
40-species. The number of butterfly datasets in Kaggle is 
constantly being updated. The dataset obtained contains 75 
butterfly species, with 9,285 images used for training, 375 
images for testing, and 375 images for validation (see Table 
2). The dimensions of all butterfly images are the same: 224 
x 224 pixels. The images in the butterfly dataset include 
various features such as image orientation, camera angle, 
wing length, background complexity, and occlusion. Some 
examples of butterfly species listed in Figure 2 are Adonis, 
Banded Orange Butterfly, Cairns Birdwing, and Monarch. 

 

Table 2. Butterfly Species 
 

Species Train Validation Testing 

1 Adonis 127 5 5 

2 African Giant Swallowtail 107 5 5 

3 American Snoot 105 5 5 

4 An 88 121 5 5 

5 Appollo 128 5 5 

6 Atala 143 5 5 

7 Banded Orange Heliconian 139 5 5 

8 Banded Peacock 119 5 5 

9 Beckers White 116 5 5 

10 Black Hairstreak 121 5 5 

11 Blue Morpho 107 5 5 

12 Blue Spotted Crow 123 5 5 

13 Brown Siproeta 141 5 5 

14 Cabbage White 128 5 5 

15 Cairns Birdwing 118 5 5 

16 Checquered Skipper 136 5 5 

17 Chestnut 122 5 5 

18 Cleopatra 133 5 5 

19 Clodius Parnassian 124 5 5 

20 Clouded Sulphur 131 5 5 

21 Common Banded Awl 125 5 5 

22 Common Wood-Nymph 128 5 5 

23 Copper Tail 134 5 5 

24 Crecent 138 5 5 

25 Crimson Patch 103 5 5 

26 Danaid Eggfly 135 5 5 

27 Eastern Coma 133 5 5 

28 Eastern Dapple White 135 5 5 

29 Eastern Pine Elfin 136 5 5 

30 Elbowed Pierrot 117 5 5 

31 Gold Banded 104 5 5 

32 Great Eggfly 111 5 5 

33 Great Jay 135 5 5 

34 Green Celled Cattleheart 126 5 5 

35 Grey Hairstreak 123 5 5 

36 Indra Swallow 115 5 5 

37 Iphiclus Sister 136 5 5 

38 Julia 115 5 5 

39 Large Marble 116 5 5 

40 Malachite 104 5 5 

41 Mangrove Skipper 125 5 5 

42 Mestra 123 5 5 

43 Metalmark 108 5 5 

44 Milberts Tortoiseshell 137 5 5 

45 Monarch 129 5 5 

46 Mourning Cloak 187 5 5 

47 Orange Oakleaf 125 5 5 

48 Orange Tip 137 5 5 

49 Orchard Swallow 109 5 5 

50 Painted Lady 112 5 5 

51 Paper Kite 129 5 5 

52 Peacock 120 5 5 

53 Pine White 123 5 5 

54 Pipevine Swallow 120 5 5 

55 Popinjay 121 5 5 

56 Purple Hairstreak 113 5 5 

57 Purplish Copper 132 5 5 

58 Question Mark 110 5 5 

59 Red Admiral 117 5 5 

60 Red Cracker 137 5 5 

61 Red Postman 127 5 5 

62 Red Spotted Purple 123 5 5 

63 Scarce Swallow 139 5 5 

64 Silver Spot Skipper 119 5 5 

65 Sleepy Orange 153 5 5 

66 Sootywing 128 5 5 

67 Southern Dogface 125 5 5 

68 Straited Queen 124 5 5 

69 Tropical Leafwing 118 5 5 

70 Two Barred Flasher 109 5 5 

71 Ulyses 120 5 5 

72 Viceroy 115 5 5 

73 Wood Satyr 102 5 5 

74 Yellow Swallow Tail 107 5 5 

75 Zebra Long Wing 108 5 5 

 Total 9285 375 375 

 

2.3 Data Augmentation  

Data augmentation includes techniques that can increase 
the quality and size of butterfly training data [1]. All original 
images of butterflies were transformed in each epoch with 
different transformation functions using the Keras framework 
image data generator. Epsilon-ZCA whitening is the first in a 
series of consecutive operations carried out by data 
augmentation. The following are image rotation, width and 
height shift range, shear range, zoom range, channel shift 
range, blending mode, and horizontal flipping. As a result, the 
recently created images will have different variations of the 
same image. Fig. 2 shows the examples shown in Table 3 of 
transformed stack images and transformation functions used 
in this data augmentation study. 
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Figure 2. Data augmentation process 

 
2.4 Deep Neural Networks 

Deep learning has recently emerged as a significant 
working discipline for artificial intelligence applications. 
Deep learning's adoption rate may be credited to substantial 
successes in a variety of fields, including linked speech 
recognition [25], natural language processing [26], and 
human-computer interaction [27], object detection, pose 
estimation, face recognition, eye movement analysis, scene 
labelling, action recognition, object tracking [28]–[30]. Deep 
learning processes are based on artificial neural networks that 
are altered by neurons in the human brain that schematize 
[11]. By automatically removing the distinguishing 
characteristics from the input data, deep learning approaches 
can address the issues of feature extraction and selection. 
Deep learning, however, requires more detailed data than 
traditional neural networks. 

 

Table 3. Transformation functions 

Transformation 

functions 

Description 

epsilon zca whitening = 

1e-06 

 

apply ZCA whitening to Epsilon, which 

determines the degree of image correlation 

reduction. The higher the epsilon value, the 

smaller the correlation reduction 

image rotation = 30  sets the degree range for random rotation. 

width shift range = 0.2 the picture is shifted to the left or right 

(horizontal shift). 

height shift range = 0.2 the tasks are the same as for the latitudinal 

shift range, but shear intensity is shifted up 

or down (vertically) 

shear range = 0.2  shear intensity, i.e., anti-clockwise shear 

angle setting in degrees 

zoom range = 0.3 randomizes the range for zooming 

channel shift range = 0. changes the saturation level of the colour 

(for example: bright red/dark red) of pixels 
by changing the channel [R, G, B] of the 

input image. 

fill mode = ‘nearest’ replaces the nearest pixel area. During 
image rotation, many pixels shift out of the 

image, generating unoccupied areas to be 

filled. The fill mode's default setting is 

nearest. 

horizontal flip = true flips the image horizontally 

 

The first proposed model is CNN. CNN is an essential 
deep learning model that uses convolution rather than generic 
matrix multiplication [20]. The deep learning model of CNN 
is mainly utilized in image classification, object detection, 
and similarity detection [31], [32]. The typical CNN structure 
comprises numerous sequential layers of convolution and 
pooling, then fully linked layers, and lastly the output layer, 
or SoftMax layer, to classify the images. Figure 3 depicts the 
fundamental construction of CNN. Fig. 4 displays the precise 
layout and layered architecture of the CNN model employed 
in this study [33]. Input, convolution, pooling, and fully 
linked layers make up the foundation of the CNN 
architecture.  

 

Figure 3. The structure of basic CNN 

 

The steps used in the model are input image butterfly 
images with a size of 224x244 pixels; convolution layer; 
pooling layer; and fully connected layer. The success and 
resource requirements of the specified model heavily depend 
on the organization of the layer. The input data may need to 
have certain preparation techniques performed to it, such as 
noise reduction and scaling. Low-resolution photos as an 
input may result in a decline in the network's depth and 
functionality [11]. The input data undergoes a convolution 
process using feature selection filters in the convolution layer, 
also referred to as the transformation layer. Both randomly 
generated and pre-set filters are available. Data are 
transformed into a feature map as a result of the convolution 
process. For the subsequent convolution layer, the pooling 
layer serves to minimize the size of the input matrix [11]. The 
two most popular methods in the pooling layer are max 
pooling and average pooling. Then convolution and pooling 
layers are followed by the fully linked layer. The data from 
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the pooling layer is condensed into a single dimension in the 
fully connected layer. A neuron is referred to as fully linked 
because every neuron is connected. The process of 
classification is done at this layer, where activation functions 
like Sigmoid and ReLU are employed. The model's score 
values are used in the output layer to create the probability-
based loss value using the Softmax function. In addition, two 
dense layers and two dropouts with a dropout area of 0.2 and 
Softmax activation are added to the fully connected layer. The 
dropout layer, which is employed when the model exhibits 
over-fitting (memorization), facilitates the process of 
removing certain connections that lead to overlearning. 
Consequently, some neurons in the fully linked layers are 
randomly removed by the model to stop the network from 
memorizing. Concisely, the proposed CNN model in this 
study created four 2D convolution layers (2DConv), three 
2x2 max pooling layers, four activation layers (ReLU), four 
batch normalization layers, and global pooling with 2D global 
average pooling as the flattening. The loss function of the 
CNN model is a sparse categorical cross-entropy with the 
Adam optimiser. The model is then trained with 50 epochs. 

The second proposed model is ResNet50. The residual 
Neural Network 50 (ResNet50) is a 50 layers convolutional 
neural network. This architecture was developed in 2015 by 
a team from Microsoft Research. The ResNet design was 
created in response to a surprise discovery in deep learning 
research: adding additional layers to a neural network did not 
necessarily improve the results. ResNet can have a very deep 
network of up to 152 layers by inserting a skip connection 
(also known as a shortcut connection) to fit the input from the 
previous layer to the next layer without altering the input [33]. 
By combining the output of an earlier layer with the output of 
a later layer, skip connections are created (See Fig. 5). These 
connections enabled the network to develop improved 
representations of the input data by preserving information 
from previous levels. ResNet-50 is made up of 50 layers 
separated into 5 blocks, each of which contains a collection 
of residual blocks. The residual blocks enable the network to 
develop better representations of the input data by preserving 
information from previous levels. The capacity to train 
enormously deep networks with hundreds of layers is one of 
ResNet's primary features. This is made feasible by the use of 
residual blocks and skip connections, which allow 
information from preceding levels to be preserved. Another 
benefit of ResNet-50 is its capacity to produce cutting-edge 
results in a variety of image-related tasks such as object 
identification, image classification, and picture segmentation. 
This architecture generally consists of three unique features. 
These include link skipping, stack normalization, and the 
elimination of fully connected layers. Convolution is 
performed on the input picture by the network's convolutional 
layer, which is its first layer. A max-pooling layer that down 
samples the convolutional layer's output comes next. 
Following the max-pooling layer, a number of residual blocks 
are applied to the output. A rectified linear unit (ReLU) 
activation function and a batch normalization layer come after 
each of the two convolutional layers that make up each 
residual block. Subsequently, the output of the second 
convolutional layer is combined with the input of the residual 
block, and it undergoes yet another ReLU activation function. 
The subsequent block receives the output of the residual 
block.  The output of the last residual block is mapped to the 
output classes by the fully connected layer, which is the last 

layer of the network. The number of output classes is equal to 
the number of neurons in the fully linked layer. The hopping 
connection strategy in ResNet is then referred to as residual 
learning. The vanishing gradient problem that plagued prior 
CNN designs was substantially eliminated by ResNet's 
approach. Furthermore, ResNet is less complex than smaller 
networks such as VGGNet (19 layers). As a result, ResNet 
outperformed all ConvNets in the 2015 ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) competition, using 
152 layers and achieving at best-five error rate of 3.6% [34]. 
ResNet has emerged as the finest CNN architecture and 
practice standard since 2016 [30]. An illustration of the 
difference between the classic or basic CNN architecture and 
ResNet is shown in Fig. 6. 

 

 
Figure 4. Structure and architecture of CNN 
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Figure 5. Skip connections of ResNet 

 

Figure 7 depicts the ResNet50 architecture employed in 
the study. The procedures are outlined below. The input 
image is convolved on the convolution layer with a 7x7 filter 
and a 2-step size. The convolution method generates a feature 
map that has been batch normalized. The normalizing 
findings are then fed into the ReLU activation layer. 
Furthermore, before entering the second stage of convolution, 
the output value of the ReLU activation is lowered on the 
max-pooling layer. Between the second and fifth convolution 
stages, the next process is carried out using a combination of 
convolution blocks and identity blocks. The next step is to 
move to the fully linked layer phase to carry out the 
classification process by adding Softmax. 

 

 
 

Figure 6. Differences between CNN and ResNet 

 

The ensemble model is the third proposed model. 
Multiple models are trained on the same data set, and 
predictions are created by combining the forecasts in some 
fashion to provide the final prediction. [24]. The ensemble 
model is an advanced learning process that refines 
performance overall by integrating conclusions from 
numerous models [35]. In this study, an ensemble model is 
created by combining the ResNet50 architecture and the CNN 
architecture. Fig. 8 shows the process of ensemble learning 
and the value of the parameters. 

 

 
Figure 7. Structure and architecture of ResNet50 

 
2.5 Performance evaluation 

It is critical to understand how effectively the deep 
learning models function. Some analysis parameters are 
employed for this purpose. The models may categorize the 
data into four groups: true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN). TP represents 
how accurate the predicted positive cases are, whereas TN 
classifies them accurately as negative cases. Forward, FP, and 
FN are all mistakenly labelled as positive and negative. As 
performance evaluation measures in this study, accuracy, 
precision, recall, and F1 score values were used. The number 
of correctly categorized predictions per model divided by the 
total number of predicted cases is used to calculate accuracy 
[18]. Equation (1) depicts the equation for computing the 
accuracy value. Precision has been defined as the proportion 
of the model's total positive predictions that were correctly 
predicted [20]. The precision value is calculated using 
Equation (2). The number of true positive predictions, for 
instance, accurately mapped to the positive class, is recall. 
Equation (3) is used to calculate recall. The model's 
approximate performance, based on average accuracy and 
recall, is then determined using the F1 score. The F1 score is 
calculated using Equation (4). 

 

Accuracy =  
TP + TN

TP + FP + TN + FN
 (1) 

Precision =  
TP

TP + FP
 (2) 

Recall =  
TP

TP + FN
 (3) 

F1 − score = 2 × 
precision × recall

precision × recall
 (4) 
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Figure 8. Ensemble model architecture 

 

3 RESULT AND DISCUSSION 

TensorFlow was used in the Google Collaboratory to run 
deep learning experiments. Three transfer learning models 
were presented using the Python 3 programming language 
and the Keras package. The models were ResNet50, CNN, 
and the Ensemble model (ResNet50 with CNN). The 
architecture of ResNet50 in this study was adopted from Ji et 
al. [33], while CNN's architecture and ensemble model were 
built independently. Table 4 lists the model parameters that 

were used in the models. All models were equipped with 50 
epochs and 128 batch sizes. Sparse categorical cross-entropy 
was employed to boost the learning rate and save memory 
time [36]. The Adam optimiser was used for all models. 

The accuracy and loss curves were acquired when the 
deep learning models were launched. Table 5 displays the 
training and validation accuracy at the conclusion of 50 
epochs. With no data augmentation, Resnet50 had the lowest 
accuracy of any model, with a training accuracy of 88% and 
a validation accuracy of 69%. CNN achieved 91% training 
accuracy and 86% validation accuracy. Subsequently, the 
ensemble model achieved 100% training accuracy and 95% 
validation accuracy. Validation accuracy is more meaningful 
because it gives an indication of how successful the deep 
learning models are at correctly classifying the data they 
haven't seen before [37]. Therefore, particular importance 
was attached to validation accuracy. As the data expanded, 
each model improved. Resnet50 validation accuracy had 
increased to 85%, CNN to 87%, and the ensemble model to 
97%. A similar improvement in ResNet50 can also be seen in 
validation loss accuracy. The data expansion reduced the 
accuracy of the ResNet50 validation loss from 1.43% to 
0.61%. In contrast, the ensemble model achieved the lowest 
validation loss accuracy at 0.113%. Figure 9-20 depicts the 
accuracy and loss curves for each model. According to the 
graphs, data augmentation enhanced image training accuracy. 

 

Table 4. Model Parameters 

Parameters names Value 

Input sizes 

Epoch 

Batch size 

Number of classes 

Number of training images 

Number of test images 

Optimiser 

Loss function 

224 x 224 

50 

128 

75 

9.285 

375 

Adam 

Sparse categorical cross entropy 

 

Table 5. Training and Validation Accuracy 

Models ResNet50 CNN Ensemble 

Without Data 

Augmentation 

Train acc. 0.88 0.91 1.00 

Valid acc. 0.69 0.86 0.95 

Train loss 0.58 0.48 0.0015 

Valid loss 1.43 0.58 0.33 

With Data 

Augmentation 

Train acc. 0.90 0.87 0.97 

Valid acc. 0.85 0.87 0.97 

Train loss 0.31 0.43 0.084 

Valid loss 0.61 0.42 0.113 
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Figure 9. Resnet50 accuracy (without data augmentation) 

 

 

Figure 10. Resnet50 accuracy (with data augmentation) 

 

 

Figure 11. Resnet50 loss (without data augmentation) 

 

 

 

 

 

 

 

 

Figure 12. Resnet50 loss (with data augmentation) 

 

 

Figure 13. CNN accuracy (without data augmentation) 

 

 

Figure 14. CNN accuracy (without data augmentation) 
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Figure 15. CNN loss (without data augmentation) 

 

 

Figure 16. CNN loss (with data augmentation) 

 

 

Figure 17. Ensemble model accuracy (without data augmentation) 

 

 

 

Figure 18. Ensemble model accuracy (with data augmentation) 

 

 

Figure 19. Ensemble model loss (without data augmentation) 

 

Figure 20. Ensemble model loss (with data augmentation) 
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Figs. 9 and 10 display the training and validation 
accuracy curves of ResNet50 using data augmentation and no 
data augmentation. After 10 epochs, the training accuracy 
grew dramatically and stabilized after 20 epochs. The 
validation accuracy curve showed a similar pattern, albeit 
with lower accuracy, and there was a gap between the curves. 
The accuracy curves of CNN training and validation were 
then shown in Figures 13 and 14. At the beginning of the 10 
epochs, there were some points of variation in validation 
accuracy, with the gap being smaller than ResNet50. After 
data augmentation, the curves were crowded together, with 
some points going up and down. In Figs. 15 and 16, the loss 
curves show better performance than ResNet50, although 
there were some ups and downs in the first 10 epochs. 
Overall, the data augmentation improved accuracy, and the 
loss of CNN was not as significant as with ResNet50. 
Subsequently, the ensemble model's accuracy and loss curves 
are depicted in Figs. 17, 18, 19, and 20. As with the other deep 
learning models, there were some deviations in the first ten 
epochs. With data augmentation, the pattern still appeared in 
the first ten epochs. Therefore, the training images were 
slightly improved by the data augmentation. 

In addition to the accuracy and loss curves, evaluation 
metrics were also used as parameters to determine model 
performance. The evaluation metrics' test results are shown in 
Table 6. ResNet50 outperformed other models in terms of 
accuracy after data augmentation. This model previously 
achieved 69% accuracy, 72% precision, 69% recall, and a 
69% F1 score. After data augmentation, ResNet50 then 
achieved higher accuracy of 86%, 87% precision, 86% recall, 
and an 85% F-1 score. These results indicate that data 
augmentation could improve ResNet50 performance. CNN 
came to the same conclusion. Without data augmentation, the 
model obtained 86% accuracy, 88% precision, 86% recall, 
and an 86% F1 score. Then data augmentation improved to 
88%, 89% precision, 88% recall, and an 88% F1 score. For 
the ensemble model, the mixture of ResNet50 and CNN 
attained higher accuracy than ResNet50. The accuracy 
increased to 93%, 93% of precision, 93% of recall, and 92% 
of F1 score. With data augmentation, the ensemble model 
attained better accuracy at 95% precision, 96% recall, and 
95% F1 score. This finding indicated that the ensemble model 
could improve the performance of ResNet50. 

 

Table 6. Evaluation Metrics 

Models 
 

ResNet50 CNN Ensemble 

Without Data 

Augmentation 

Accuracy 0.69 0.86 0.93 

 
Precision 0.72 0.88 0.93 

 
Recall 0.69 0.86 0.93 

 
F-1 Score 0.69 0.86 0.92 

With Data 

Augmentation 

Accuracy 0.86 0.88 0.95 

 
Precision 0.87 0.89 0.96 

 
Recall 0.86 0.88 0.95 

 
F-1 Score 0.85 0.88 0.95 

 
Support 375 375 375 

 

 

Table 7. Performance Comparison with Different Approaches 

Ref. Dataset Pre-processing Techniques Optimiser Accuracy 

(%) 

[11] 10 

species 

(900 

images) 

No data 

augmentation 

VGG16, AdaDelta 79,5 

VGG19 77,2 

ResNet50 70,2 

[1] 15 

species 

(1125 

images) 

cropping, 

rescaling, 

horizontal flips, 

fill mode, shear 

range, width 

shift, height 

shit, dan 

rotation range 

VGG16 SGD 86,6 

VGG19 Adam 92 

MobileNet SGD 81,3 

Xception SGD 87,9 

ResNet50 SGD 43,9 

Inception 

V3 

RMSProp 94,6 

[22] 1000 

images 

flipping, 

rotation, 

translation, 

cropping, 

geometric 

transformation 

dan color space 

VGG16, RMSProp 86 

ResNet50 53 

InceptionV3 95 

MobileNet 93 

This 

study 

75 

species 

(10035 

images) 

epsilon zca 

whitening, 

image rotation, 

width shift 

range, height 

shift range, 

shear range, 

zoom range, 

channel shift 

range, fill mode 

horizontal flip, 

dan pre-

processing 

function. 

ResNet50 Adam 86 

CNN 88 

ResNet50 + 

CNN 

95 

 

A performance comparison between the suggested 
technique and current state-of-the-art approaches was done to 
demonstrate the importance of the suggested strategy. The 
comparative results, particularly in relation to ResNet50, are 
presented in Table 7, aligning with previous studies on 
butterfly image recognition. By combining CNN with 
ResNet50, the present method outperforms the selected 
studies, achieving an impressive 95% accuracy in butterfly 
image recognition, as indicated by the performance 
comparison. 

 

4 CONCLUSION 

The proposed research aimed to optimise ResNet50 
accuracy in classifying butterfly species from visual images. 
Data augmentation was utilized to improve the ResNet50 
accuracy and thus the dataset's quality. Several 
transformation functions were sequentially implemented. The 
result of the experiment revealed that applied data 
augmentation might improve ResNet50 accuracy by up to 
85%. The ensemble model has also been used to ResNes50 
with CNN. With data augmentation, the ensemble model of 
ResNet50 attained an accuracy of up to 95%. These results 
indicate that ResNet50 accuracy can be optimised by 
applying data augmentation and ensemble deep learning. This 
research can be further extended by combining ResNet50 
with other deep-learning models to find the best performance. 
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