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Abstract— The use of the Internet of Things (IoT) in the health sector, known as the Internet of Medical Things (IoMT), allows for 

personalized and convenient (e)-health services for patients. However, there are concerns about security and privacy as unethical 

hackers can compromise these network systems with malware. We proposed using hyperparameter-optimized Machine and Deep 

Learning models to address these concerns to build more robust security solutions. We used a representative Anomaly Intrusion 

Detection System (AIDS) dataset to train six state-of-the-art Machine Learning (ML) and Deep Learning (DL) architectures, with 

the Synthetic Minority Oversampling Technique (SMOTE) algorithm used to handle class imbalance in the training dataset. Our 

hyperparameter optimization using the Random search algorithm accurately classified normal cases for all six models, with Random 

Forest (RF) and K-Nearest Neighbors (KNN) performing the best in accuracy. The attention-based Convolutional Neural Network 

and Long Short-Term Memory (CNN-LSTM) model was the second-best performer, while the hybrid CNN-LSTM model performed 

the worst. However, there was no single best model in classifying all attack labels, as each model performed differently in terms of 

different metrics.  
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1 INTRODUCTION 

Internet of Things (IoT) transformation studies have 

long been extended to the health sector and are mainly 

referred to as the Internet of Medical Things (IoMT) [1], [2], 

[3], [4]. IoMT makes personalized (e)-health services 

possible and enjoyable for patients who use them. Several 

benefits of IoMT among others according to Liyakathunisa et 

al. include - infectious disease remote monitoring; effective 

treatment and diagnosis; constant monitoring of patients’ 

conditions; instant access to the patient’s medical history; fast 

notification and automatic reminders; remote medical care; 

automatic transmission and analysis of data generated from 

IoMT devices; ease of embedding advanced and accurate 

algorithms that can detect abnormalities; ease of locating and 

tracking patients; and flexibility of having medical 

consultations remotely via telehealth and telemedicine [5].  

The paper aims to contribute to the development of an 

effective anomaly-based Intrusion Detection System (AIDS) 

[6], [7], [8] for IoMT by revisiting the implementation of 

various machine learning (ML) and deep learning (DL) 

algorithms on a recent and relevant realistic public dataset. 

Due to its benefits and advantages, the adoption of IoT 

devices in healthcare organizations has reached 70% with 

increasing reliance in such organizations on the IoMT. The 

COVID-19 pandemic increased the adoption of the IoMT to 

reduce the risks of getting infected while treating patients. It 

is expected that the global IoT in the healthcare market will 

reach USD 290 billion by 2028 from USD 128 billion in 

2023. However, we also see increasing cyber-attacks during 

the pandemic where cyber criminals and Advanced Persistent 

Threat (APT) groups have taken advantage of targeting 

vulnerable people and systems [9]. The increase in 

connectivity in IoMT also creates an increase in the risk of 

security breaches and cyber-attacks. Hackers may target 

IoMT devices to access sensitive patient data or disrupt 

critical medical processes. Therefore, it is essential to develop 

effective intrusion detection systems (IDSs) to protect the 

IoMT from cyber threats [10], [11]. 

The contributions of the paper are as follows: 

• Examining the existing intrusion detection systems 

designed for IoMT. 

• Investigating and evaluating the use of six machine 

learning and deep learning algorithms: Random Forest 

(RF), Support Vector Classifier (SVC), K-Nearest 

Neighbor (KNN), Convolutional Neural Network (CNN), 

hybrid Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) (CNN-LSTM), and the 

attention-based hybrid CNN-LSTM with hyperparameter-

optimized AIDS for IoMT. 

• Implementing an intrusion detection system for IoMT 

with a realistic dataset. 

• Suggesting future work in the field. 

 

Due to the widespread cyberattacks on IoMT, various 

intrusion detection systems (IDSs) for IoMT have been 

developed in recent years. In this section, we highlight some 

of these studies. 

Binbusayyis et al. proposed an investigation and 

comparison platform to understand the efficiency of the ML 

algorithm for intrusion alert in the IoMT network [12]. Five 

ML algorithms including the KNN, Naïve Bayes (NB), 

Support Vector Machine (SVM), Artificial Neural Network 

(ANN), and Decision Tree (DT) algorithms are investigated 

over the publicly available Bot-IoT dataset. The study 

reported that the DT algorithm outperformed other ML 

algorithms in detecting intrusion. 

Thamilarasu et al. applied ML techniques and mobile 

agent technology to design and develop an attack detection 

system connecting several medical IoT devices [13]. Their 

system used three agents whose specific task was to migrate, 

learn and collaboratively perform attack detection. Using 

various ML algorithms such as the popular SVM, DT, NB, 

KNN, and RF, the study performed experiments with several 

wireless networks connected to medical IoT devices. Results 

obtained in the work demonstrated high detection accuracy 

with minimal energy consumption overhead.  

Zachos et al. proposed a hybrid system architecture for 

anomaly detection in IoMT networks [14]. They leveraged 

host-based and network-based technologies to monitor and 

collect log files from the IoMT devices, the gateway, and the 

traffic from the IoMT edge network. Their anomaly detection 

system can minimize the computational cost using ML 

techniques, which are implemented by a detection engine 

running on the gateway of the IoMT edge network. Popular 

ML algorithms such as the KNN, NB, DT, and RF algorithms 

are built and implemented over two current IoT datasets. 

Results obtained from the experiment suggest that DT, RF, 

and KNN algorithms are most suitable for the Central 

Detection component of the proposed AIDS. 

A method to detect attack traffic using a deep neural 

network in the IoMT-Blockchain environment is proposed in 

[15]. The authors employed a multi-model autoencoder 

(MMAE) to effectively learn the fusion of low-dimensional 

feature representations from various characteristics of the 

original data. The study used two proprietary datasets (TADA 

and TADB) gathered from the IoMT-Blockchain network. 

TADA included DoS, Probe, R2L, PortScan, SSH, and U2R, 

while TADB included Backdoor, DoS, Exploit, Analysis, 

Fuzers, and Worms.  

Anomaly-based IDS in IoT using kernel extreme 

learning machine to classify malicious traffic is proposed by 

[16]. The study showed that the proposed method can 

improve the performance of IDS in terms of accuracy rate, 

sensitivity rate, F1-score and the area under the curve. 

From the above-reviewed literature, it is evident that the 

use of ML and DL techniques with hyperparameter 

optimization tuning and data augmentation that can surmount 

the challenges of conventional machine learning models and 

result in better performance for similar applications has not 

been fully explored. Hence, we propose to leverage this 

advantage to advance research in IoMT AIDS modelling. In 

this study, we built an AIDS for IoMT network that would 

leverage the hyperparameter optimization of ML and DL 

algorithm parameters and evaluate their performance. We 

used six ML and DL algorithms: RF, SVC, KNN, CNN, 

CNN-LSTM, and the attention-based hybrid CNN-LSTM. 
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We also used the popular realistic public dataset suitable for 

IoMT in our experiments. 
 

2 METHOD 

2.1 Dataset 

The use of IoT-related datasets that reflect real-world 

IoT applications plays an essential role in evaluating the 

accuracy as well as the efficiency of the intrusion detection 

models. However, there is a lack of availability of real-world 

datasets among the research community as most of the 

companies that deal with IoT devices are reluctant to share 

their log details due to privacy concerns. This creates an 

obstacle in the creation of intrusion detection models tailored 

to IoT, IoMT, or Industrial IoT (IIoT) applications. 

We collected the publicly available and best dataset 

for AIDS applications that is representative of the current 

attacks on IoMT devices and networks. Specifically, we used 

the TON_IoT telemetry dataset [17], [18], [19]. The 

TON_IoT datasets are new generations of industry 4.0/ IoT 

and IIoT datasets for evaluating the fidelity and efficiency of 

different cybersecurity applications based on AI, that is, ML 

and DL algorithms. We labelled all attacks and normal traffic 

individually using class 0 to represent the normal cases, and 

classes 1–7 to represent various attacks. These attacks include 

a backdoor attack represented by class 1, an Injection attack 

represented by class 2, a password attack represented by class 

3, a DDoS attack represented by class 4, a ransomware attack 

represented by class 5, an XSS attack represented by class 6, 

and scanning attack represented by class 7. The distribution 

of the normal and attacks consists of 210,000 normal cases 

data points, 30,000 backdoor attacks data points, 30,000 

injection attacks data points, 30,000 password attacks data 

points, 20,000 DDoS attacks, 13,128 ransomware attacks, 

4,960 XSS attacks, and 3,444 scanning attacks. 

 

2.2 Data Pre-Processing 

We pre-processed our data by making x and y variables 
from it. This was done by setting the label column as y target 
variable and encoding it. We also set other columns excluding 
the label and type columns as x variables. From Figure 1, we 
can see that the study dataset is biased. This is known as a 
problem of class imbalance, and it occurs when there is an 
unequal distribution of resources among classes. 
Consequently, we must perform data augmentation on it to 
remove bias and create equal distributions. To accomplish 
this, we used the Synthetic Minority Oversampling 
Technique (SMOTE) algorithm [20], [21], [22]. By default, 
SMOTE is designed to oversample all classes to have the 
same number of examples as the class with the highest 
number of examples. In our case, class 0, which represents 
the normal cases, has the highest number of examples with 
210,000 data points. Therefore, the SMOTE algorithm will 
oversample all classes to have 210,000 examples. This can be 
seen in Figure 1 that shows the study data distribution after 
the data augmentation process.  

The SMOTE technique was applied only to the training 
data to address the issue of class imbalance. By oversampling 

the minority class in the training data, we aimed to provide a 
more balanced view of the model, thereby improving its 
ability to detect anomalies, which are often underrepresented. 

 

 

Figure 1. The distribution of the training dataset before and after data 

augmentation 

 
Applying SMOTE to the entire dataset, including the test 

data, could lead to overly optimistic performance estimates. 
The reason is that it could result in having identical instances 
in both the training and test sets. This would give an illusion 
that the model is performing well on unseen data, while in 
reality, it has already seen those instances during training. By 
applying SMOTE only to the training data, we ensured that 
the test data served as a realistic representation of the original 
data distribution and provided a reliable estimate of the model 
performance. We also normalized our x variable training and 
testing dataset to scale it into the range of 0 and 1 using the 
MinMaxScaler function [23]. 

 

2.3 Machine Learning Models 

Three ML models including the RF, the SVM, and the 
KNN classifier models were compiled and built. The aim was 
to use the ML classifiers to fit our IoMT training dataset by 
supervised learning and make predictions classifying the 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


IJID (International Journal on Informatics for Development), e-ISSN: 2549-7448 

Vol. 12, No. 2, December 2023, Pp. 374-385  
 

 
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. 

See for details: https://creativecommons.org/licenses/by-nc-nd/4.0/ 

377 

labels into normal cases and cyber-attack cases. These 
algorithms are briefly described in the following subsection. 

2.3.1 RF Algorithm: The RF classifier algorithm is 

compiled and built in this study using the Scikit-

Learn ML library. The RF algorithm is a robust and 

popular ensemble algorithm for classification tasks 

[24]. It is known for its scalability and ease of use. 

2.3.2 SVM Algorithm: We used the Scikit-Learn ML 

library to compile and build the SVM classifier 

method. Its efficiency as an ML algorithm has led to 

its use in a wide range of fields, including the 

categorization of electrocardiograms. A more 

involved version of the SVC was utilized by Jannah 

et al. [25]. The SVC is capable of both binary and 

multi-class classification on any given dataset. We 

used the Scikit-learn ML toolkit in Python to 

compile and create the SVC algorithm using a 

random state value of zero, a tolerance value of 

0.00001, and other default settings. 

2.3.3 KNN Algorithm: The KNN classifier algorithm was 

compiled and built in this study using the Scikit-

Learn ML library. KNN is a straightforward 

algorithm that is a bit different from the SVC 

classifiers described earlier. The difference is seen 

in their learning process. For example, the KNN 

algorithm is a non-parametric type of ML model 

whose learning process is instance-based. That is, 

their learning is characterized by memorizing the 

training set resulting in no (zero) cost. On the other 

hand, the models cannot be characterized by a fixed 

set of parameters and the number of parameters is a 

function of the size of the training set. In contrast, 

the linear SVC classifier is a parametric type of ML 

model that allows the estimation of parameters from 

the training set to learn a function that can classify 

new data points. 

 

2.4 Deep Learning (DL) Models 

Three DL models including the CNN, the CNN-LSTM, 

and the Attention-CNN-LSTM classifier models were 

compiled and built. The aim was to use the DL classifiers to 

fit our IoMT training dataset by supervised learning and make 

predictions classifying the labels into normal cases and cyber-

attack cases. We used the Random Search hyperparameters 

optimization technique [26] to find the best parameters for 

compiling and building an efficient DL model. Following 

that, the best hyperparameters were obtained and utilized to 

train DL models on the training data. 

2.4.1 CNN Classifier: CNN has grown in popularity in a 

variety of AI applications such as image 

classification, speech recognition, computer vision, 

etc. [27]. The network comprises layers that extract 

low-level features from raw data and use other layers 

to process these features for an output. We used 

tabular data as input for all models including the 

CNN model. Each row in the table represents a 

network event, and each column represents a feature 

of the network event, such as packet size, time, 

protocol type, type of traffic, etc. The data were not 

spatially correlated as in images, but there might be 

some form of temporal correlation between different 

network events. To apply CNNs, traditionally used 

for image data, to our tabular data, we made some 

adjustments to the model architecture. Instead of 

treating the input as a 2D image, we treated it as a 

1D sequence. Our CNN model was designed with 

1D convolutional layers instead of the typical 2D 

convolutional layers used for image data. The 1D 

convolutional layers can capture the local 

dependencies of the input sequence, which can be 

crucial for identifying anomalous patterns in 

network traffic. The output of the convolutional 

layers was then flattened and fed into fully 

connected layers for the final classification. The 1D 

CNN architecture followed the Keras sequential 

modelling style that first defined the model before 

adding other layers. Three blocks of the basic 

structure of a CNN were included in this architecture 

(see Figure 2). Block A consisted of a 1D 

convolutional layer with 128 filters, kernel size of 6, 

ReLU activation function, ‘same’ padding, and input 

shape of (13, 1); a Batch Normalization layer; and a 

Max Pooling 1D layer with pool size of 3, strides of 

2, and ‘same’ padding. Block B consists of a 1D 

convolutional layer with 64 filters, kernel size of 6, 

ReLU activation function, ‘same’ padding, and input 

shape of (13, 1); a Batch Normalization layer; and a 

Max Pooling 1D layer with pool size of 3, strides of 

2, and ‘same’ padding. Block C consisted of a 1D 

convolutional layer with 64 filters, kernel size of 6, 

Rectified Linear Unit (ReLU) activation function, 

‘same’ padding, and input shape of (13, 1); a Batch 

Normalization layer; and a Max Pooling 1D layer 

with pool size of 3, strides of 2, and ‘same’ padding. 

The output from the three blocks was flattened with 

the addition of a flattened layer. A dropout of 20% 

was added and the output was passed to a dense layer 

with 64 neurons in the presence of a ReLU activation 

function. Another dropout of 20% was added and the 

output was passed to another dense layer with 64 

neurons in the presence of a ReLU activation 

function. Again, another dropout of 20% was added 

and the output was passed to a dense layer with 8 

neurons in the presence of a SoftMax activation 

function. The SoftMax activation function was 

added to compute the probabilities for each target 

class in the total classes. Furthermore, the Stochastic 

Gradient Descent (SGD) optimizer was used in this 

study with the categorical cross-entropy loss 

function. An early stopping criterion with a patience 

of 10 was also implemented. Total parameters of 

88,712, 88,200 trainable and 512 non-trainable, 
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were included in this architecture. Figure 2 shows 

the CNN architecture built in this study. 
2.4.2 Hybrid Convolutional Neural Network and Long 

Short-Term Classifier: Recurrent neural network 
(RNN) algorithms can overcome the traditional NN's 
limitation in extracting sequence data-based 
information [27], [28]. The algorithms use network 
types that are related to previous outputs, making 
modelling time series problems possible. However, 
they become very inefficient when presented with 
larger sequences. The LSTM algorithm uses cell 
state memory instead of simple neurons which helps 
the algorithm to store data for longer periods. LSTMs 
have a repeating module with four interacting layers. 
Its building block is the memory cell. In each 
memory cell, there is a recurrent edge that has a 
desirable weight of w=1 to overcome the vanishing 
and exploding gradient challenges. The values 
associated with this recurrent edge are called the cell 
state. The network structure consists primarily of the 
cell state and gates, which include the input gate, 
forget gate, and output gate, and these gates can show 
or erase data in the cell state memory block at random 
time intervals [28]. The major function of the cell 
state is to set the current state of the cell in the 
algorithm among others. In this study, we compiled 
and built a hybrid CNN-LSTM model. The CNN 
architecture compiled here is like the previous one 
described earlier. The LSTM layer was added to the 
CNN architecture to form the hybrid CNN-LSTM 
model. The LSTM layer was compiled with 256 
hidden neurons, 20% dropout, and 20% recurrent 
dropout. This layer was added to the CNN 
architecture after the block C layer to form the hybrid 
CNN-LSTM model as seen in Figure 3.  
Additionally, only one dense layer of 64 neurons was 
added here contrary to that of the CNN architecture. 
The last dense layer consists of 8 hidden neurons and 
a SoftMax function. The SGD optimizer was used 
with the categorical cross-entropy loss function. An 
early stopping criterion with a patience of 10 was 
also implemented. Total parameters of 421,448, 

420,936 trainable and 512 non-trainable, were 
included in this architecture. 

2.4.3 Attention-based Convolutional Neural Network and 
Long Short-Term Classifier: In 2016, Bahdanau et al. 
proposed the widely used attention process model as 
a component of a neural network and adapted it to 
neural-machine translation [29]. Two popular 
variants of these models exist, and they are the 
Bahdanau model [29] and the Luong model [30]. In 
this study, we compiled and built an attention-based 
hybrid CNN-LSTM model. The architecture 
consisted of the hybrid CNN-LSTM model and an 
attention layer. The attention layer was added 
immediately after the LSTM layer of the hybrid 
CNN-LSTM model as seen in Figure 4. Other 
parameters were similar to the hybrid CNN-LSTM 
model. The SGD optimizer was used with the 
categorical cross-entropy loss function. An early 
stopping criterion with a patience of 10 was also 
implemented. Total parameters of 421,706—
421,194 trainable and 512 non-trainable—were 
included in this architecture. 

 

2.5 Train and Test Model 

The six compiled and built ML and DL models were 
trained using the training set and the best-optimized 
parameters obtained from the random search optimization 
operation. However, it is important to state that the ML 
algorithms were not optimized in this study since they did not 
need to use the learning rate parameter like the DL 
algorithms. The DL algorithms are trained for 10 epochs on a 
computer with processor Intel (R) Xeon (R) CPU E30-
1246v3@ 350 GHz, 16.0GB, 64-bit operating system, X64-
based processor, with Windows 10 Education. The 
computing resource is provided by Google Colab with GPU 
access and details: NVIDIA-SMI 460.32.03 Driver version: 
460.32.03 CUDA version: 11.2 Tesla T4. After training, the 
models are tested on the tested and evaluated on the set to 
obtain the classification results 

 

 

Figure 2. CNN architecture built in this study 
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Figure 3. Hybrid CNN-LSTM model

 

 

Figure 4. Attention-based Hybrid CNN-LSTM model

 

2.6 Performance Metrics 

The ML and DL models were evaluated using standard 
performance metrics: accuracy, precision, recall, and F1-score 
(see Table 1) [7]. Where true positive (TP) means anomalous 
traffic correctly identified, true negative (TN) means normal 
traffic correctly identified, false positive (FP) means normal 
traffic incorrectly identified as anomalous, and false negative 
(FN) means anomalous traffic incorrectly identified as normal. 

 

Table 1. Performance Metrics 

Performance Metric Definition 

Accuracy 𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Recall (True 
Positive rate) 

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

F1-Score 2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

3 RESULT AND DISCUSSION 

 

3.1 Classification Results 

The classification results for six ML and DL algorithms 
are presented in Table 2 – Table 7. Table 2 presents the 
classification report of the predictions from the RF 
architecture. Figure 5 shows the Error matrix of the True 
labels versus Predicted labels. For the ML models, from 
Table 2 and Figure 5, it is observed that the RF model 
efficiently classified all labels, both normal and cyber-attacks 
with 100% certainty in terms of Precision, Recall, and F1-
Score metrics, and with 99% Accuracy, except with the 
password and scanning cyber-attacks. The model classified 
the password attack with 97% Precision, 93% Recall, 95% 
F1-Score and 99% Accuracy, while it classified the scanning 
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attack with 58% Precision, 78% Recall, 66% F1-Score, and 
99% Accuracy.  

Table 3 presents the classification report of the predictions 
from the SVC architecture. From Table 3, it is shown that the 
SVC model efficiently classified the normal cases with 100% 
certainty in terms of Precision, Recall, and F1-Score metrics, 
and with 80% Accuracy. For the label attacks, the model 
classified the backdoor attack with 99% Precision, 97% 
Recall, 98% F1-Score and 80% Accuracy, while it classified 
the ransomware attack with 80% Precision, 93% Recall, 86% 
F1-Score, and 80% Accuracy. It also classified the Injection 
attack with 74% Precision, the XSS attack with 54% Recall, 
and the scanning attack with 85% Recall score. All other 
cyber-attack labels are poorly classified by the model. 

Table 4 presents the classification report of the predictions 
from the KNN architecture. From Table 4, it is observed that 
the KNN model efficiently classified the normal cases, the 
DDoS attack, and the ransomware attack with 100% certainty 

in terms of Precision, Recall, and F1-Score metrics, and with 
99% Accuracy. For other attack labels, the model classified 
them efficiently also with performance between 92% – 99% 
in terms of all metrics, except with the scanning attack where 
it achieved 55% Precision, 76% Recall, 64% F1-Score, and 
99% Accuracy. 

 
Table 2. RF Performance Results 

Class Precision Recall F1-Score Accuracy 

(weighted 

average) 

0 1.00 1.00 1.00 0.99 

1 1.00 1.00 1.00 0.99 

2 1.00 1.00 1.00 0.99 
3 0.97 0.93 0.95 0.99 

4 1.00 1.00 1.00 0.99 

5 1.00 1.00 1.00 0.99 
6 1.00 1.00 1.00 0.99 

7 0.58 0.78 0.66 0.99 

 

 

Figure 5. RF error matrix of the true label versus predicted label

 

Table 3. SVC Performance Results 

Class Precision Recall F1-Score Accuracy 

(weighted 

average) 

0 1.00 1.00 1.00 0.80 

1 0.99 0.97 0.98 0.80 

2 0.74 0.01 0.03 0.80 
3 0.46 0.30 0.37 0.80 

4 0.41 0.36 0.38 0.80 

5 0.80 0.93 0.86 0.80 
6 0.13 0.54 0.20 0.80 

7 0.11 0.85 0.19 0.80 

 
Table 4. KNN Performance Results 

Class Precision Recall F1-Score Accuracy 
(weighted 

average) 

0 1.00 1.00 1.00 0.90 
1 0.81 1.00 0.90 0.90 

2 0.92 0.48 0.63 0.90 

3 0.79 1.00 0.88 0.90 
4 0.53 0.89 0.66 0.90 

5 0.95 0.51 0.66 0.90 

6 0.00 0.00 0.00 0.90 
7 0.00 0.00 0.00 0.90 
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Table 5 presents the classification report of the predictions 
from the CNN architecture. Figure 66 shows the Error matrix 
of the True labels versus Predicted labels. For the DL models, 
from Table 5 and Figure 66, it can be seen that the CNN model 
efficiently classified the normal cases with 100% certainty in 
terms of Precision, Recall, and F1-Score metrics, and with 
90% Accuracy. For the attack labels, the model classified the 
backdoor attack with 81% Precision, 100% Recall, 90% F1-
Score and 90% Accuracy; the injection attack with 92% 
Precision, 48% Recall, 63% F1-Score, and 90% Accuracy; 
the password attack with 79% Precision, 100% Recall, 88% 
F1-Score, and 90% Accuracy; the DDoS attack with 53% 
Precision, 89% Recall, 66% F1-Score, and 90% Accuracy; 
and the ransomware attack with 95% Precision, 51% Recall, 
66% F1-Score, and 90% Accuracy. The model could not 
predict the XSS and the scanning attacks in Precision, Recall, 
and F1-Score, but it achieved 90% in classifying these 
attacks. 

Table 6 presents the classification report of the predictions 
from the CNN-LSTM architecture. Figure 77 shows the Error 
matrix of the True labels versus Predicted labels. From Table 
6 and Figure 77, it is evident that the hybrid CNN-LSTM 
model efficiently classified the normal cases with 100% 
certainty in terms of precision, Recall, and F1-Score metrics, 
and with 71% accuracy. For the attack labels, the model 
classified the injection attack with 45% precision, 100% 
Recall, 62% F1-Score, and 71% accuracy. The model poorly 
classified every other attack label in precision, Recall, and 
F1-Score, but it achieved 71% in accurately classifying these 
other attack labels. 

Error! Reference source not found. presents the 
classification report of the predictions from the attention-
based CNN-LSTM architecture. Figure 88 shows the Error 
matrix of the True labels versus Predicted labels. From 
Error! Reference source not found. and Figure 88, it is 
evident that the attention-based CNN-LSTM model 
efficiently classified the normal cases with 100% certainty in 
Precision, Recall, and F1-Score metrics, and with 94% 
Accuracy. For the attack labels, the model classified the 
backdoor attack with 99% Precision, 92% Recall, 95% F1-
Score and 94% Accuracy; the injection attack with 94% 
Precision, 65% Recall, 77% F1-Score, and 94% Accuracy; 
the password attack with 82% Precision, 100% Recall, 90% 
F1-Score, and 94% Accuracy; the DDoS attack with 65% 
Precision, 100% Recall, 79% F1-Score, and 94% Accuracy; 
and the ransomware attack with 84% Precision, 99% Recall, 
91% F1-Score, and 94% Accuracy. The model could not 
predict the XSS and the scanning attacks in precision, Recall, 
and F1-Score, but it achieved 94% in accurately classifying 
these attacks. 

 

Table 5. CNN Performance Results 

Class Precision Recall F1-Score Accuracy 

(weighted 
average) 

0 1.00 1.00 1.00 0.90 

1 0.81 1.00 0.90 0.90 
2 0.92 0.48 0.63 0.90 

3 0.79 1.00 0.88 0.90 

4 0.53 0.89 0.66 0.90 
5 0.95 0.51 0.66 0.90 

6 0.00 0.00 0.00 0.90 

7 0.00 0.00 0.00 0.90 

 

Table 6. CNN-LSTM performance results 

Class Precision Recall F1-Score Accuracy 

(weighted 
average) 

0 1.00 1.00 1.00 0.71 

1 0.00 0.00 0.00 0.71 

2 0.45 1.00 0.62 0.71 
3 0.05 0.07 0.06 0.71 

4 0.07 0.08 0.07 0.71 

5 0.00 0.00 0.00 0.71 
6 0.00 0.00 0.00 0.71 

7 0.00 0.00 0.00 0.71 

 

Table 7. Attention-based CNN-LSTM performance results 

Class Precision Recall F1-Score Accuracy 
(weighted 

average) 

0 1.00 1.00 1.00 0.94 
1 0.99 0.92 0.95 0.94 

2 0.94 0.65 0.77 0.94 

3 0.82 1.00 0.90 0.94 
4 0.65 1.00 0.79 0.94 

5 0.84 0.99 0.91 0.94 

6 0.00 0.00 0.00 0.94 
7 0.00 0.00 0.00 0.94 

 

Generally, all six ML and DL models accurately classified 
the normal cases in terms of the Precision, Recall, and F1-
score metrics. In terms of the Accuracy metric, the RF and the 
KNN models achieved the best with 99% in classifying the 
normal cases; the attention-based hybrid CNN-LSTM model 
trained for only 1 epoch achieved the second best with 94%; 
the CNN model trained for only 1 epoch achieved the third 
best with 90%; the SVC model achieved the 4th best with 
80%; and the hybrid CNN-LSTM model was the worst 
performed with 71%. In terms of other metrics and attack 
labels, different models performed differently. However, 
though we could only train the DL models for only 1 epoch 
due to computational resources, it is evident that the RF and 
the KNN models are best performed in terms of all metrics. 
The attention-based hybrid CNN-LSTM model is second 
best, while the hybrid CNN-LSTM model performed the 
worst. 

 

3.2 Discussion 

In our study, we observed variations in the performance 

of our model across different attack labels. This could be 

attributed to the inherent differences in the characteristics of 

different types of attacks. For instance, some attacks may 

have distinct patterns that are easier for the model to learn and 

identify, resulting in higher performance metrics for these 

attack labels. On the other hand, some attacks may exhibit 

patterns that are more subtle or similar to normal traffic, 

making them harder to detect and leading to lower 

performance metrics. 
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Figure 6. CNN error matrix of the true label versus predicted label

 

 

Figure 7. CNN-LSTM error matrix of the true label versus predicted label
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Figure 8. Attention-based CNN-LSTM error matrix of the true label versus predicted label

 

The distribution of different attack labels in our dataset 

could also influence the variations. If certain attack labels are 

underrepresented in the dataset, the model may not have 

sufficient examples to learn from, affecting its ability to 

accurately identify these attacks. These variations in model 

performance highlight the importance of having a diverse and 

representative dataset for training. In real-world applications, 

an intrusion detection system may encounter a wide range of 

attacks, some of which may not be well-represented in the 

training data. This underscores the need for continuous model 

training and updating as new attack patterns emerge. 

The dataset used in our study was collected from a specific 

IoMT environment, which may not fully represent the 

diversity of IoMT devices and network traffic patterns in 

other environments. This could introduce biases in our model, 

as it might perform well on similar data but fail to generalize 

to different IoMT environments. Furthermore, any inherent 

biases or errors in the dataset could have been inadvertently 

learned by our model, affecting its performance and 

reliability. 

Future studies could benefit from incorporating multiple 

datasets collected from diverse IoMT environments. This 

would provide a more comprehensive and representative 

view of IoMT network traffic, enhancing the generalizability 

of the anomaly detection system. Additionally, using multiple 

datasets could help identify and mitigate potential biases or 

errors in individual datasets. The significance of larger 

training epochs for DL architectures lies in the potential for 

improved model performance. With more epochs, the model 

has more opportunities to learn from the data and adjust its 

weights and biases to minimize the loss function. However, it 

is important to monitor the model for signs of overfitting, as 

training for too many epochs can cause the model to become 

overly specialized to the training data and perform poorly on 

unseen data. 

Future studies could also consider a wider range of IoMT-

related features in the training set. For instance, in addition to 

network traffic features, researchers could include device-

specific features (such as device type, manufacturer, and 

software version), user behaviour features (such as frequency 

and timing of device usage), and environmental features 

(such as network conditions). These additional features could 

provide a more comprehensive view of the IoMT 

environment and potentially improve the performance of the 

intrusion detection system. 

 

4 CONCLUSION 

We have contributed to knowledge in this field by 

building an anomaly detection system for the Internet of 

Medical Things based on Artificial Intelligence techniques 

using Machine and Deep Learning models. We implemented 

six ML and DL algorithms: RF, SVC, K-NN, CNN, hybrid 

CNN-LSTM, and the attention-based hybrid CNN-LSTM for 

IDS for IoMT. We performed a hyperparameter optimisation 

using the Random search algorithm to obtain the best 

parameters needed to build our models in this study. State-of-

the-art ML and DL architectures are built in this study to 

investigate the best performance in terms of selected 

performance metrics in the task of detecting anomalies in 

IoMT networks. To train our models and develop an efficient 

detection system, we adopted the popular AIDS dataset that 

is representative of the current attacks on IoMT devices and 

networks.  
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We also selected the SMOTE oversampling technique to 

handle the class imbalance in our training dataset. Our 

experiment results show that in general the RF and the KNN 

models are best performed in terms of all metrics. The 

attention-based hybrid CNN-LSTM model is second best, 

while the hybrid CNN-LSTM model is worst performed. In 

terms of classifying all attack labels by the different metrics, 

we found that no particular model performed best, as different 

models performed differently in terms of different metrics 

while classifying the cyber-attack labels. However, we 

acknowledge the limitations of our study, including the use of 

a single dataset and the variations in model performance 

across different attack labels and metrics. These limitations 

highlight the need for future research to incorporate multiple, 

diverse datasets and to consider multiple evaluation metrics 

to enhance the generalizability and reliability of the proposed 

system. We believe that addressing these limitations in future 

research endeavours will further advance the field of IoMT 

security, leading to more robust and reliable intrusion 

detection systems. 
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