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Abstract— Osteosarcoma is an aggressive and highly malignant bone cancer primarily affecting adolescents and young adults, with 

males being more commonly affected. Although deep learning models such as YOLO (95.73% accuracy) and VGG19 (95.25% 

accuracy), have demonstrated effectiveness in osteosarcoma detection, their large model sizes and extensive computational 

requirements limit their feasibility in resource-constrained environments. This study proposes a lightweight AI approach that 

optimizes osteosarcoma detection while maintaining high diagnostic accuracy, leveraging machine learning models under 5MB, 

manually or semi-automatically extracted features, and SMOTE for data balancing. Experimental results show that Random Forest, 

SVM, and XGBoost achieve accuracies of 94.70%, 94.23%, and 94.39%, respectively, closely matching the performance of YOLO 

and VGG19 while maintaining computational efficiency. Furthermore, the inference time for SVM is under one second (0.97s), 

demonstrating the speed advantage of lightweight models. These findings highlight the potential of small-size (lightweight) machine 

learning models to deliver high diagnostic accuracy with minimal computational requirements, providing a scalable and practical 

solution for early osteosarcoma detection in resource-limited settings. By balancing simplicity, efficiency, and high performance, this 

study establishes a new benchmark for achieving state-of-the-art results with lightweight models and paving the way for improved 

healthcare accessibility in underserved regions. 

Keywords— Lightweight Machine Learning; medical diagnostic; Osteosarcoma detection; Random Forest; SMOTE
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1 INTRODUCTION 

Osteosarcoma is a highly aggressive and malignant form 
of bone cancer that primarily affects children and young 
adults, particularly those in their teenage years. It is 
considered the most common primary bone cancer in this age 
group, with more than 60% of cases diagnosed in individuals 
under the age of 25. The disease exhibits a bimodal age 
distribution, with a prominent peak during adolescence and a 
smaller peak in individuals over 60. This pattern suggests a 
strong correlation between osteosarcoma and periods of 
accelerated bone turnover. Epidemiologically, osteosarcoma 
exhibits a slight male predominance, with a male-to-female 
ratio of approximately 3:2. This disparity may be partly 
attributed to differences in growth spurts and bone 
remodeling rates between sexes. According to the World 
Health Organization (WHO), the overall incidence rate of 
osteosarcoma in the global population is approximately 4 to 
5 cases per 1,000,000 individuals. However, this incidence 
nearly doubles to 8 to 11 cases per 1,000,000 individuals 
annually in the 15–19-year-old age group, emphasizing its 
predilection for adolescents. 

In Indonesia, although osteosarcoma is relatively rare 
compared to other cancers, it remains a significant public 
health concern. Bone cancers, including osteosarcoma, 
account for approximately 1.6% of all cancers in the country. 
Notably, the incidence has shown a rising trend over the 
years, which could reflect improved diagnostic capabilities or 
a genuine increase in cases. A 13-year retrospective study at 
Cipto Mangunkusumo Hospital (RSCM) from 1995 to 2007 
reported 219 cases of Osteosarcoma. This accounted for 
70.59% of all bone malignancies treated at the institution 
during that period, with the highest prevalence observed in 
individuals in their second decade of life, reinforcing the link 
between osteosarcoma and adolescence [1], [2].  

Osteosarcoma, a rare and aggressive form of bone cancer, 
is influenced by various risk factors that increase its 
likelihood of development. Age is a significant factor, with 
most cases occurring in individuals aged 10 to 30 years, 
particularly during adolescence when rapid bone growth 
occurs, and another smaller peak in those over 60, often 
associated with underlying bone conditions like Paget’s 
disease. Studies have shown that children with osteosarcoma 
tend to be above average height, indicating a possible 
connection between rapid growth and the development 
of this disease. Gender differences are notable, with 
osteosarcoma being more common in males than females, 
potentially due to differences in bone growth and hormonal 
factors. 

Osteosarcoma also exhibits racial disparities, with higher 
incidence rates observed in African American and 
Hispanic/Latino populations, although the factors 
contributing to these disparities are not yet fully understood. 
Exposure to high-dose radiation, particularly during 
childhood or adolescence, is a well-established risk factor, 
often linked to prior cancer treatments. Certain bone diseases, 
including Paget's disease, which alters normal bone 
remodeling processes, have been linked to an increased risk 
of osteosarcoma development. 

Genetic predisposition is another critical aspect, as 
individuals with inherited conditions like Li-Fraumeni 

syndrome, Rothmund-Thomson syndrome, or hereditary 
retinoblastoma have a heightened risk of developing 
osteosarcoma. These syndromes are characterized by 
mutations in tumor suppressor genes, leading to impaired cell 
growth regulation and defective DNA repair mechanisms. 

Beyond genetic factors, environmental exposures may 
also contribute to osteosarcoma risk. Studies have explored 
the potential role of heavy metals, pesticides, and industrial 
pollutants in disrupting normal bone cell function, though 
definitive conclusions are still lacking. Although no specific 
dietary causes have been identified, sufficient calcium and 
vitamin D intake is crucial for bone health, and deficiencies 
may indirectly influence bone disease susceptibility. 

Treatment for osteosarcoma typically involves a 
combination of surgery, chemotherapy, and in some cases, 
radiation therapy. Advances in medical research have led to 
improved survival rates, particularly for patients whose 
cancer is detected early and has not metastasized. However, 
challenges remain, especially for individuals with tumors in 
difficult-to-operate locations or those who experience 
recurrence. Ongoing clinical trials and emerging therapies, 
such as targeted molecular treatments and immunotherapy, 
hold promise for further improving outcomes for 
osteosarcoma patients. 

While osteosarcoma remains a complex disease with 
multiple influencing factors, increased awareness, early 
detection, and continued research are crucial in enhancing 
survival rates and improving the quality of life for affected 
individuals. Genetic predispositions also play a critical role, 
with inherited conditions like retinoblastoma, caused by 
mutations in the RB1 gene, and Li-Fraumeni syndrome, 
associated with mutations in the TP53 gene, significantly 
elevating the risk. Understanding these risk factors is 
essential for identifying high-risk populations and enabling 
earlier detection and intervention to improve outcomes [3], 
[4]. 

Symptoms of osteosarcoma are such as bone or joint pain 
that worsens over time, a lump in the arm or lower leg, 
uninjured fractures, back pain, or loss of bowel or bladder 
control [5], [6]. Diagnosis is made through physical 
examination, biopsy, imaging and laboratory tests. Treatment 
options depend on the stage and grade of the cancer, as well 
as the patient's overall condition, and may include surgery, 
chemotherapy and radiation therapy. Early detection and 
appropriate treatment can improve the patient's prognosis [7]. 

Osteosarcoma is the most common type of bone cancer in 
humans [8] and its aggressive nature and rapid progression 
make early detection critical for ensuring optimal treatment 
planning and improving patient outcomes. Delays in 
diagnosis can lead to cancer spreading, significantly reducing 
survival rates. Conventional diagnostic methods, relying 
heavily on expert analysis, are often hindered by delays and 
inaccuracies, especially in settings with limited resources. To 
address these challenges, artificial intelligence has emerged 
as a powerful tool to enhance the speed and accuracy of 
diagnostic processes, providing significant benefits in 
environments with limited access to specialized medical 
expertise. By leveraging AI-based approaches, such as 
automated image analysis and predictive modeling, subtle 
patterns in medical imaging—often overlooked by the human 
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eye—can be detected more accurately and quickly [9], [10], 
[11], [12], [13]. This capability accelerates diagnosis, 
enhances accuracy, and enables earlier intervention, 
ultimately leading to improved patient 
outcomes and prognoses. 

A study by Anisuzzaman et al. demonstrated the efficacy 
of transfer learning models, such as VGG19 and Inception 
V3, in the classification of osteosarcoma histology images 
[14]. The evaluation showed that VGG19 achieved accuracy 
rates of up to 95.25% in binary and multi-class classification 
tasks, significantly outperforming Inception V3's 
accuracy of 84.20%. By leveraging pre-trained models on 
large public datasets, this approach not only enhances 
diagnostic accuracy but also significantly reduces the 
workload of pathologists. The use of transfer learning allows 
the models to generalize effectively from vast amounts of 
prior data, making them a valuable tool for improving 
diagnostic efficiency and consistency in clinical settings [14], 
[15]. 

Similar research by Gawade et al. focused on developing 
Convolutional Neural Network (CNN)-based deep learning 
models, including ResNet101, VGG19, and DenseNet201, 
tailored for bone radiography datasets. Among these, 
ResNet101 emerged as the most effective, achieving the 
highest accuracy of 90.36% in detecting bone tumors. These 
findings underscore the vast potential of deep learning models 
to revolutionize medical imaging diagnostics by dramatically 
enhancing precision and accuracy. However, the practical 
application of these models in real-world settings faces 
challenges, particularly in resource-constrained areas. The 
high computational power and large datasets required to train 
and deploy these models limit their feasibility in regions with 
limited infrastructure and technological resources, 
underscoring the need for more accessible and lightweight 
alternatives [16]. 

The utilization of cutting-edge segmentation methods, 
such as Multiple Supervised Fully Convolutional Networks 
(MSFCN), has yielded outstanding results in the automated 
detection and segmentation of osteosarcoma 
tumors in CT images. MSFCN leverages multilevel 
supervised output layers to enhance multi-scale learning, 
enabling the model to capture intricate details across varying 
scales. This approach has achieved a remarkable Dice 
similarity score of up to 87.8%, highlighting its accuracy in 
delineating tumor boundaries. However, despite its 
effectiveness, the technique faces challenges, including high 
computational demands and limited generalizability to 
diverse datasets. Although effective for CT images with 
distinct, complex textures, the current model's performance 
has limitations, highlighting the necessity for further 
refinement to enhance its versatility and applicability to 
diverse imaging modalities and datasets [17]. 

While these studies have shown promising results, they 
are constrained by significant limitations, including their 
dependence on sophisticated models, substantial 
computational resources, and large datasets, which restricts 
their feasibility in settings with limited resources. For 
instance, ResNet101 has a model size of 171 MB with 44.7 
million parameters, VGG19 is 549 MB with 143.7 million 
parameters, and DenseNet201 is 80 MB with 20.2 million 
parameters [18]. The large model sizes and high parameter 

counts require substantial computational resources, posing 
significant deployment challenges in environments with 
constrained infrastructure. 

In addition, the dataset available for osteosarcoma on the 
Cancer Imaging Archive (TCIA) is limited in size and 
imbalanced across the four available classes. This presents an 
additional challenge in the classification process of 
osteosarcoma bone cancer. The imbalance in the dataset tends 
to result in biased and inaccurate training and prediction 
outcomes [19]. 

To address these challenges, we aimed to enhance the 
approach to osteosarcoma detection. While previous studies 
have relied on large, resource-intensive deep learning models, 
this study introduces a lightweight AI approach that balances 
simplicity, computational efficiency, and diagnostic 
accuracy. In this context, "lightweight" refers to AI models 
that are small in size, consume minimal computational 
resources, and offer rapid inference times, making them 
highly practical for real-world applications, particularly in 
resource-limited environments. Unlike deep learning 
architectures such as VGG19 (549 MB), ResNet101 (171 
MB), or DenseNet201 (80 MB), which require significant 
storage and computational power, our machine learning 
models remain under 5MB, allowing easy deployment on 
standard computing hardware, including edge devices. 

Beyond storage efficiency, lightweight AI models also 
exhibit significantly lower CPU usage and faster processing 
speeds, making them well-suited for real-time applications 
where quick decision-making is crucial. Moreover, efficiency 
is boosted by leveraging manually or semi-automatically 
extracted features, which decreases dependence on the 
substantial computational resources usually needed for 
feature extraction using deep learning methods. To address 
data imbalance—a persistent challenge in medical imaging 
datasets—we incorporate the Synthetic Minority Over-
sampling Technique (SMOTE), ensuring a more balanced 
representation of all classes. Despite their streamlined design, 
these lightweight models achieve diagnostic accuracy 
comparable to more complex deep learning architectures, 
demonstrating that high-performance osteosarcoma detection 
can be achieved without sacrificing computational efficiency 
or requiring high-end infrastructure. 

 

2 METHOD 

Various studies have employed artificial intelligence 
approaches to enhance the accuracy of osteosarcoma 
detection, primarily by leveraging pre-trained deep learning 
models. Some studies stand out for their promising results. 
For example, research such as [2]. Aziz et al. utilized pre-
trained CNN models like ResNet and VGG. In these 
approaches, features from pre-trained models were further 
processed using multilayer perceptron (MLP) or Fast.ai 
algorithms, achieving high accuracy rates, with one study 
reporting up to 95.2% accuracy for multiclass classification. 
However, these approaches have a significant drawback: their 
reliance on large pre-trained models demands high 
computational power, making them unsuitable for low-
specification devices. 
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To delve deeper into these challenges, this study 
leveraged data from the publicly accessible Cancer Imaging 
Archive (TCIA), focusing on the “Osteosarcoma Tumor 
Assessment” dataset. The dataset features a collection of 
annotated medical images, including CT and MRI scans, 
paired with pertinent clinical data, offering a robust resource 
for research and investigation. All ethical concerns were 
adequately addressed, as the dataset is fully anonymized and 
shared following stringent privacy protocols and 
regulatory guidelines. Despite its utility, the dataset presents 
challenges, including its limited size and an imbalance across 
its available classes, which complicates training and risks 
introducing bias in predictions. 

This issue of dataset imbalance is widely acknowledged 
in the literature and has prompted various strategies to 
mitigate its impact. One common approach is data 
augmentation, as demonstrated in the study by Walid et al. 
[21]. By integrating pre-trained models like EfficientNet and 
NasNetMobile with a voting classifier, the researchers 
significantly improved classification performance, yielding 
an impressive Kappa score of 96.50%. Although this 
approach enhanced overall performance, it failed to 
completely mitigate the inherent bias toward the majority 
class, underscoring the ongoing difficulty of addressing class 
imbalance in osteosarcoma detection. 

Apart from classification, some studies have focused 
more on osteosarcoma image segmentation. Examples of 
such research include the studies by Tang et al. [22] and 
Ouyang et al. [23], which investigated the accuracy of MRI 
image analysis. These approaches achieved Dice Similarity 
Coefficients (DSC) ranging from 0.921 to 0.949, 
demonstrating the advantages of attention mechanisms. 
Similar to classification methods, these techniques rely 
heavily on extensive datasets and intricate data processing, 
posing challenges for practical implementation. Researchers 
have also shifted focus toward developing lightweight models 
that strike a balance between computational efficiency and 
performance, offering a promising solution for resource-
constrained applications. Studies such as [24], [25] 
emphasize enhancing image features like edge details and 
reducing noise. These approaches are computationally 
efficient alternatives to large pre-trained models but do not 
adequately address crucial challenges such as dataset 
imbalance or minority class classification. 

Meanwhile, classical machine learning techniques have 
been explored as another potential pathway. An example is 
research by Liu et al. [26] which applied regression analysis 
to identify predictive biomarkers. While this method offers 
simplicity and computational efficiency, it similarly falls 
short of addressing the imbalance in datasets, a factor critical 
to improving model reliability. 

The outlined methods indicate that combining classical 
machine learning algorithms with techniques like SMOTE 
offers a promising strategy to address existing challenges 
and limitations. SMOTE has the potential to tackle dataset 
imbalance more effectively without requiring excessive data 
augmentation, making it computationally more efficient. The 
subsequent section provides an in-depth examination of 
SMOTE, including its application and potential benefits in 
the context of osteosarcoma detection. For a clearer 

understanding of the framework of this study, it can be seen 
in the flowchart (Fig. 1) below. 

 

Figure 1. Research workflow 

 

The first step after obtaining the dataset is to check the 
class balance within the dataset. This is important because 
medical data tends to have imbalanced classes in some 
available repositories. If the dataset is imbalanced, SMOTE 
is applied to achieve balance. The balanced dataset serves as 
the foundation for training a suite of machine-learning 
models, allowing for a thorough performance comparison. By 
comparing the performance of multiple models, this approach 
identifies the most accurate and reliable model for classifying 
osteosarcoma bone cancer. 

 

2.1 Synthetic Minority Over-Sampling Technique 

Given its effectiveness, the SMOTE has become a widely 
adopted method for addressing dataset imbalance. By 
generating synthetic samples for the minority class, SMOTE 
offers a robust solution that enhances model performance 
across various imbalanced datasets. Its versatility has made it 
a popular choice in numerous fields, enabling machine 
learning algorithms to achieve more reliable and balanced 
outcomes without relying on excessive data augmentation 
[27], [28], [29], [30]. In the following section, I will discuss 
SMOTE in more detail and explore its application to 
osteosarcoma detection. 
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The SMOTE is a method specifically designed to address 
the issue of imbalanced datasets, a common challenge in data 
analysis and machine learning. This technique was first 
introduced by Chawla et al. in their paper [31]. SMOTE 
generates synthetic data for the minority class through linear 
interpolation, thereby enhancing the representation of the 
minority class without duplicating existing data. 

The approach works by calculating the distance between 
each minority class sample  𝑥𝑖 and its  𝑘 nearest neighbors 
using metrics such as Euclidean distance. Based on the 
desired level of oversampling, a certain number (𝑚) of these 
neighbors are randomly selected. Synthetic samples are then 
generated using Eq. 1: 

 

𝑝𝑖𝑗  = 𝑥𝑖  +  𝑟𝑎𝑛𝑑(0,1) (𝑥𝑖𝑗 − 𝑥𝑖) (1) 

 

Where rand (0,1) is a uniformly distributed random number 
within the interval [0,1]. This process produces a new data 
point 𝑝𝑖𝑗, which lies along the line segment connecting the 

original sample 𝑥𝑖 and one of its nearest neighbors 𝑥𝑖𝑗 . 

This ensures that the minority class distribution becomes 

more balanced, by reducing biases in machine learning 

models. In the formulation, the term 𝑥𝑖𝑗 − 𝑥𝑖  calculates the 

vector difference between a minority sample (𝑥𝑖) and its 

nearest neighbor (𝑥𝑖𝑗), which dictates the direction of 

interpolation for generating synthetic samples. The 

multiplying factor rand (0,1) controls the relative position of 

the synthetic sample along the line, ensuring that the new 

samples are randomly distributed along the segment. The 

result is an expansion of the decision space for the minority 

class, improving the model’s ability to recognize patterns in 

the minority class that were previously underrepresented. 

SMOTE has been widely applied across various fields that 

encounter data imbalance issues. For example, in breast 

cancer classification using datasets like the Breast-cancer-

Wisconsin, SMOTE enhances the model's sensitivity to 

cancer cases [32]. In financial fraud detection, SMOTE 

improves accuracy by mitigating biases toward normal 

transactions, which typically far outnumber fraudulent 

transactions [33], [34], [35]. The technique has also been 

applied in medical image analysis, such as pixel classification 

to detect cancerous regions in mammograms [36]. 

 

2.2 Data Preparation 

The data was directly retrieved from the TCIA repository, 
a trusted and widely utilized source for medical imaging 
research(https://wiki.cancerimagingarchive.net/pages/viewp
age.action?pageId=52756935). The dataset, curated by 
clinical scientists at the University of Texas Southwestern 
Medical Center in Dallas, provides a valuable 
resource for research. Archival samples from 50 patients 
treated at Children's Medical Center, Dallas, between 1995 
and 2015, were used to create the dataset. Pathologists 
selected four patients (out of the 50) based on the diversity of 
tumor specimens following surgical resection. The images 
were labeled as Non-Tumor, Viable Tumor, and Necrosis 

according to the dominant cancer type present in each image. 
Two medical experts performed the annotation, with the 
images split between the two pathologists. A single 
pathologist provided annotations for all images in the dataset. 
Based on information from the source, the dataset includes 
1,144 images, each sized 1024 X 1024 at 10X resolution, with 
the following distribution: 536 (47%) non-tumor images, 263 
(23%) necrotic tumor images, and 345 (30%) viable tumor 
tiles. 

Upon downloading, you will find two main folders, TS1 
and TS2. The TS1 folder has 11 subfolders (set1-set11), while 
the TS2 folder has 12 subfolders (set1-set12). After a series 
of data merging between TS1 and TS2, based on the 
information in the PathologistValidation.csv file for each 
subfolder set, we obtained the data count for each class, which 
has now been divided into four classes as shown in Fig. 2. 

To prepare the data for model training, a comprehensive 
pre-processing pipeline is implemented to ensure the data is 
well-suited for the chosen machine learning algorithms. As 
shown in pseudocode Algorithm 1. The process begins with 
loading the dataset and separating the feature set (X) from the 
target labels (y). The target labels, which may be categorical, 
are encoded into numerical representations using a label 
encoder. This step formats the labels to ensure compatibility 
with machine learning models, enabling seamless 
processing and analysis. 

Given the dataset contains a large number of features, 

dimensionality reduction is performed using Principal 

Component Analysis (PCA). PCA streamlines model training 

by reducing computational complexity while retaining 

essential data insights. The optimal number of PCA 

components (k) is determined by considering the explained 

variance or other domain-specific factors, striking a balance 

between dimensionality reduction and information retention. 

Once the data is transformed, it is split into training and 

testing subsets with a 70:30 ratio. Stratified sampling is 

employed during the splitting process to ensure that the 

distribution of classes remains consistent across the training 

and testing sets. This is particularly important for datasets 

with class imbalance, as it prevents certain classes from being 

disproportionately represented in either the training or 

testing subsets. 

The data is further standardized through feature scaling, 

utilizing a standard scaler to ensure consistent magnitude 

across all features. The standard scaler was selected as the 

pre-processing method to avoid a wide range of data values 

and ensure that all features have a mean of 0 and a standard 

deviation of 1. This helps many machine learning algorithms 

perform optimally by eliminating the influence of differing 

feature magnitudes. While alternatives like normalization, 

robust scaling, or log transformations could be considered, 

they are less suitable for this dataset. Normalization is not 

ideal with outliers, robust scaling is unnecessary given the 

absence of significant outliers, and log transformations would 

distort feature relationships. The scaler is fit on the training 

data and then applied to both the training and testing sets, 

ensuring consistent scaling across the dataset. Additionally, 

the same data preprocessing steps are applied to all models to 

ensure a fair comparison across their performance. 
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Figure 2. Class distribution 

 

Algorithm 1: Function pre-process SMOTE 
 Input: 

D = load_dataset(D) 

X = D without column T 

y = column T from D 

Output: X_train, X_test, y_train, y_test 

1 Function 

2       If y contains categorical values: 

3           Encoder = LabelEncoder() 

4           Y = encoder.fit_transform(y) 

  

5       If number of features in X is large: 

6           Pca = PCA(k) 

7           X = pca.fit_transform(X) 

  

8 X_train, X_test, y_train, y_test = 

split_data(X,y, test_size = 0.3, 

random_state=42, stratify=y) 

  

9        Scaler = StandardScaler() 

10 
       X_train = 

scaler.fit_transform(X_train) 

11        X_test = scaler.transform(X_test) 

  

12 
       Return X_train, X_test, y_train, 

y_test 

 

By implementing this preprocessing pipeline, the dataset 

is optimized for training, minimizing noise and computational 

overhead while boosting model performance. This approach 

ensures data compatibility with machine learning models, 

while also guaranteeing reproducibility and 

robustness of the results. 

 

3 RESULT AND DISCUSSION 

Evaluating machine learning models for Osteosarcoma 
detection is crucial for identifying solutions that optimally 
balance accuracy, computational efficiency, and adaptability, 
particularly in resource-limited settings. Ten machine 
learning models, encompassing basic algorithms and 
advanced ensemble methods, were systematically evaluated 
to determine their efficacy on the dataset. To provide a 
thorough assessment, key performance metrics - including 
accuracy, precision, recall, and F1 score - were employed to 
highlight the strengths and weaknesses of each model. The 
results highlight significant differences in the ability of these 
models to generalize and handle the inherent complexities of 
the dataset, which are discussed in Table 1. 

As shown in Table 1, ten models were evaluated based on 
metrics such as accuracy, precision, recall, and F1 score. 
Accuracy measures the overall correctness of a model's 
predictions, while precision indicates how well it identifies 
positive cases, and recall shows how many actual positives 
are correctly identified. High accuracy reflects general 
correctness but does not address the model's ability to 
distinguish positive and negative cases. High precision 
reduces false positives but may miss some positives, whereas 
high recall ensures most positives are identified, but may 
include false positives. A high F1 Score indicates a balanced 
performance in both precision and recall. 

Overall, the results indicate that ensemble methods, 
particularly XGBoost, Random Forest (RF), and SVM, 
demonstrated superior generalization and accuracy compared 
to the other models. Both models excel in handling high-
dimensional data and capturing complex features, which 
enabled them to deliver more reliable predictions on the 
testing data. 
 

Table 1. Model Comparison Results 

Models 
Results 

Accuracy Precision Recall F1 Score 

Logistic 

Regression 
0.937695 0.938726 0.937695 0.937686 

Decision 

Tree 
0.811526 0.810877 0.811526 0.811118 

Random 

Forest 
0.947040 0.948076 0.947040 0.947179 

Gradient 

Boosting 
0.931464 0.931324 0.931464 0.931323 

Support 

Vector 

Machine 

0.942368 0.944546 0.942368 0.941893 

K-Nearest 

Neighbors 
0.813084 0.860779 0.813084 0.813475 

Naive 

Bayes 
0.665109 0.700222 0.665109 0.662887 

AdaBoost 0.760125 0.776350 0.760125 0.760963 

Bagging 0.884735 0.884476 0.884735 0.884540 

XGBoost 0.943925 0.943990 0.943925 0.943629 
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 Overall, the results indicate that ensemble methods, 
particularly XGBoost, RF and SVM, demonstrated superior 
generalization and accuracy compared to the other models. 
Both models excel in handling high-dimensional data and 
capturing complex features, which enabled them to deliver 
more reliable predictions on the testing data. 

Although Gradient Boosting also performed well, it was 
slightly outperformed by XGBoost, SVM, and RF across 
most metrics. This suggests that while Gradient Boosting can 
effectively model patterns in the data, the computational 
efficiency and robustness of RF and XGBoost provided an 
additional edge in this context. 

On the other hand, simpler models like Logistic 
Regression and Naive Bayes were less effective in capturing 
the complexity of the features. Although outperformed by 
more complex models, Logistic Regression delivered 
competitive accuracy. In contrast, Naive Bayes, which 
assumes feature independence, yielded the poorest results, 
ranking last in accuracy, precision, and recall among all 
evaluated models. 

The Decision Tree model exhibited signs of overfitting, as 
evidenced by the disparity between its training and testing 
accuracies. This indicates that while the model learned well 
from the training data, it struggled to generalize to unseen 
data. Similarly, the K-Nearest Neighbors (KNN) model with 
5 n-neighbors experienced a significant drop in performance 
when working with high-dimensional data, likely due to the 
limitations of the Euclidean distance metric in such spaces. 

XGBoost, RF, and SVM demonstrated comparable 
accuracy to state-of-the-art deep learning models 
(ResNet101, MSFCN, and VGG19), yet demanded 
significantly fewer computational resources. This 
underscores their potential as practical solutions for 
deployment in resource-constrained environments without 
compromising diagnostic quality. 

After evaluating the overall performance of the models 
through key metrics such as accuracy, precision, recall, and 
F1 score, it is important to delve deeper into their behavior 
across specific categories. This can be achieved by analyzing 
the confusion matrices, which provide detailed insights into 
how well each model classifies the four categories—
non_tumor, non_viable_tumor, viable, and 
viable_non_viable. By examining these matrices, we can 
understand better the strengths and weaknesses of each 
model, particularly in handling misclassifications and 
distinguishing closely related categories. 

The confusion matrices, presented in Figure 3, provide 
valuable insights into the performance of each model across 
the four categories: non_tumor (class 0), non_viable_tumor 
(class 1), viable (class 2), and viable_non_viable (class 3). 
Ensemble methods, particularly XGBoost and RF, showed 
outstanding performance in accurately classifying instances 
across all categories. Notably, they excelled in reducing 
misclassifications between closely related classes, such as 
non_viable_tumor and viable_non_viable. This indicates that 
these models are adept at handling subtle differences in the 
feature space, which are critical for distinguishing between 
these categories. 

To delve further into the results, we can examine Figure 
3a, which refers to the confusion matrix for the RF model. In 
this matrix, the prediction labels are as follows: label 0 
represents the non-tumor category, label 1 represents the non-
viable tumor category, label 2 represents the viable tumor 
category, and label 3 represents the viable/non-viable tumor 
category. The rows represent true labels, while the columns 
represent predicted labels, with the numbers in each cell 
indicating the number of samples that were correctly or 
incorrectly predicted. For prediction labels 0 and 1, each has 
146 true positive samples; label 2 has 156 true positive 
samples; and label 3 has 157 true positive samples. 

Focusing on the misclassifications, for the non-tumor 
category (label 0), 8 samples were misclassified as non-viable 
tumor, and 7 were misclassified as viable tumor. In the non-
viable tumor category (label 1), 10 samples were 
misclassified as non-tumor, and 4 as viable tumor. These 
results suggest that true prediction rates are relatively high, 
indicating that the RF model performs well in classifying 
samples into the correct classes. Despite a low classification 
error rate, some mispredictions still occur, particularly with 
label 0 being misclassified as labels 1 or 2. 

The viable tumor category (label 2) experienced 4 
misclassifications as non-tumor and 1 as a non-viable tumor. 
The non-viable tumor category (label 1) also had 3 samples 
misclassified as viable tumors. Moving on, Figure 3b refers 
to the confusion matrix for the Support Vector Machine 
(SVM) model. The prediction labels are as follows: label 0 
has 137 true positive samples, label 1 has 150 true positive 
samples, label 2 has 161 true positive samples, and label 3 has 
157 true positive samples. For label 0, 12 testing samples 
were misclassified as non-viable tumor and 12 as viable 
tumor. For label 1, 6 testing samples were misclassified as 
non-tumor, and 4 as viable tumor. 

Remarkably, for label 2, all testing samples were correctly 
predicted as viable tumor, showcasing the model’s high 
accuracy for this class. For label 3, 3 testing samples were 
misclassified as viable tumor. These results demonstrate 
relatively high true prediction rates for the SVM model, with 
label 2 showing the best performance, as it was predicted 
correctly without error. Label 0 had the highest 
misclassification rate, with several samples mistakenly 
identified as non-viable tumor (label 1) or viable 
tumor (label 2). 

Finally, Figure 3d refers to the confusion matrix for the 
XGBoost model. The prediction labels for this model are as 
follows: label 0 has 140 true positive samples, label 1 has 148 
true positive samples, label 2 has 158 true positive samples, 
and label 3 has 156 true positive samples. For label 0, 14 
testing samples were misclassified as non-viable tumor, 6 as 
viable tumor, and 1 as viable non-viable tumor. For label 1, 
10 testing samples were misclassified as non-viable tumor, 
and 2 as viable tumor. For label 2, 1 testing sample was 
misclassified as non-tumor, and 2 as non-viable tumor. 
Testing samples from labels 3 and 4 were frequently 
misclassified as viable tumors (label 2). 

Overall, true positives were high across all classes, 
indicating good performance of the XGBoost model. The 
largest misclassification error occurred with label 0, where 
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some testing samples were incorrectly predicted as label 1 
and label 2. 

 

 

Figure 3a. Random Forest model 

 

Figure 3b. Support Vector Machine model 

 

 

Figure 3c. Gradient Boosting model 

 

Figure 3d. XGBoost model 
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Figure 3e. Logistic Regression model 

 

 

Figure 3f. K-Nearest Neighbors model 

 

 

Figure 3g. Bagging model 

 

Figure 3h. AdaBoost model 
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Figure 3i. Decision tree model 

 

Figure 3j. Naïve Bayes model 

Figure 3. Best model confusion matrix 

The runtime analysis presented in Table 2 provides 
additional insights into the computational efficiency of the 
tested models. While accuracy and other performance metrics 
are crucial for evaluating a model's effectiveness, runtime is 
equally important, especially in real-world applications with 
limited computational resources. CPU usage was also 
observed to determine which models exhibited the highest 
and lowest processing demands during training. The saved 
model sizes were also examined to determine the most 
compact and largest models, providing insights for practical 
reuse in real-world applications. Among the tested models, 
RF demonstrated the lowest CPU consumption but had the 
largest saved model size. Given that SVM and XGBoost 
achieved slightly different evaluation scores with 
significantly smaller saved model sizes, they could serve as 
viable alternatives to RF. 

Furthermore, the saved model sizes for each tested model 
were examined. The largest model identified was only 3.1 
MB (RF)—just 0.56% of the size of VGG19 (approximately 
549 MB). Despite this vast difference in size, the accuracy 
gap was minimal, at just 0.86%. This finding highlights a 
promising avenue for future research by demonstrating the 
potential of lightweight models to rival the performance of 
significantly larger deep learning architectures. 

Finally, as a concluding part of the evaluation, we 
compared the testing accuracy of the proposed models with 
previous studies that employed larger and more complex deep 
learning architectures. The findings, summarized in Table 3, 
offer several noteworthy insights. 

XGBoost, RF, and SVM achieved testing accuracies of 
94.39%, 94.70%, and 94.23%, respectively. These results 
demonstrate that smaller, ensemble-based models can deliver 
performance comparable to, or even exceeding, some larger 
deep-learning models. For instance, ResNet101, a deep 
convolutional neural network with substantial computational 

demands, achieved an accuracy of 90.36%. Similarly, 
MSFCN, which specializes in segmentation tasks, reported an 
accuracy of 87.80%. These accuracies are significantly lower 
than those achieved by XGBoost and RF by emphasizing the 
efficiency of the lightweight models in this study. 

 

Table 2. Time Comparison for Each Model 

Model 
Runtimes 

(second) 
CPU 

Saved 

Model Size 

Logistic Regression 0.0742 47.35% 4 KB 

Decision Tree 0.3694 74.70% 28 KB 

Random Forest 3.1412 50.55% 3.1 MB 

Gradient Boosting 38.1081 59.50% 704 KB 

Support Vector 

Machine 
0.9753 51.95% 754 KB 

K-Nearest 

Neighbors 
0.0011 50.50% 1.2 MB 

Naive Bayes 0.0037 47.50% 7 KB 

AdaBoost 1.8827 46.65% 36 KB 

Bagging 1.3826 49.65% 204 KB 

XGBoost 2.8262 54.15% 511 KB 

 

Table 3. Model Comparison with Previous Results 

Model Accuracy 

Current Research 

XGBoost 94.39% 

Random Forest 94.70% 

SVM 94.23% 

Previous Research 

VGG19 [14] 95.25% 

Resnet101 [16] 90.36% 

MSFCN [37] 87.80% 

YOLO [17] 95.73% 
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The only model in the comparison that surpassed the 
proposed methods were YOLO and VGG19, with an 
accuracy of 95.73% and 95.25% respectively. However, 
YOLO is specifically designed for real-time object detection 
tasks and benefits from highly optimized architectures. Even 
so, the marginal difference between YOLO and Random 
Forest (1.03%) underscores the viability of ensemble models 
as competitive alternatives, particularly in scenarios where 
computational resources are limited. 

The results highlight a critical advantage of the proposed 
models: their ability to deliver high accuracy without the need 
for extensive computational resources or large datasets. This 
makes them particularly well-suited for deployment in small 
devices or resource-constrained environments. Furthermore, 
the performance gap between XGBoost and Random Forest 
compared to ResNet101 and MSFCN underscores the 
efficiency of these models in handling complex data without 
requiring high-end hardware or prolonged training times. 

Ultimately, the analysis of runtime, CPU usage, and 
model size highlights the delicate balance between model 
performance and computational efficiency. Models like 
Naive Bayes and K-Nearest Neighbours are suitable for 
scenarios where speed is paramount, but their lower accuracy 
makes them less ideal for complex tasks. Conversely, 
ensemble methods such as Random Forest, XGBoost, and 
SVM provide an excellent balance of runtime and accuracy, 
making them the most practical choices for real-world 
applications requiring reliability and efficiency. Gradient 
Boosting, while highly accurate, may be less feasible in 
scenarios where computational resources or time are 
constrained. 

Building on these findings, this study opens new 
opportunities for further research utilizing diverse medical 
datasets and experimenting with other artificial intelligence 
models. Future research can build upon this foundation by 
exploring additional diseases and leveraging cutting-edge AI 
techniques, ultimately enhancing diagnostic precision, 
generalizability, and clinical applicability to improve 
healthcare accessibility and outcomes. 

 

4 CONCLUSION 

Based on our literature review, we recognize that 
osteosarcoma is a type of bone cancer that often appears 
suddenly, with symptoms that patients frequently overlook, 
leading to delayed treatment. Early detection is therefore 
essential to prevent further complications. With the assistance 
of AI, this has become feasible due to AI’s ability to 
recognize patterns and retain data effectively. This makes AI 
an efficient solution for osteosarcoma detection. 

This study showcases the effective detection of 
osteosarcoma using a straightforward approach that 
eliminates the need for pre-trained models or complex deep-
learning infrastructure. The results show that several machine 
learning models successfully tackled challenges in medical 
data analysis, particularly in handling imbalanced datasets. 
By applying the SMOTE technique for data preparation, the 
performance achieved was comparable to that of larger 
models. One of the highest-performing models in our study 
was Random Forest, which achieved an accuracy of 94.70%, 

only 1.03% lower than YOLO. Notably, Random Forest 
demonstrated exceptional computational efficiency, 
characterized by a compact model size, rapid processing time, 
and moderate CPU usage, making it easy to 
deploy and maintain. 

Our findings also indicate that by leveraging the SMOTE 
technique to address data imbalance and implementing 
lightweight machine learning algorithms like XGBoost and 
SVM, it is possible to achieve performance that surpasses 
larger deep learning models such as ResNet101 and MSFCN. 
Despite their simplicity, these lightweight models deliver 
high accuracy and computational efficiency, making them 
practical solutions for resource-constrained environments. 

This study underscores the feasibility of deploying 
scalable and efficient diagnostic tools for osteosarcoma 
detection. By addressing the challenges of data imbalance and 
computational constraints, this approach lays a strong 
foundation for enhancing diagnostic accessibility and 
improving healthcare outcomes, particularly in underserved 
regions. 
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