Price Forecasting of Chili Variant Commodities Using Radial Basis Function Neural Network
pdf

Keywords

chili markets
MAPE
price instability
RMSE
time series data

How to Cite

Ramadhan, A. U., Siregar, M. U., Nafisah, S., Anshari, M. ., Ndungi, R., Mulyawan, R. ., Nurochman, N., & Gunawan, E. H. (2025). Price Forecasting of Chili Variant Commodities Using Radial Basis Function Neural Network. IJID (International Journal on Informatics for Development), 12(1). https://doi.org/10.14421/ijid.2023.5129

Abstract

This study addresses the challenge of price instability in chili markets, which can lead to economic losses and inflation. To mitigate this issue, we propose a machine learning model using Radial Basis Function Neural Networks (RBFNN) to predict prices of various chili variants. Our quantitative approach involves a comprehensive data preparation process, including preprocessing and normalization of time series data collected from 2018 to 2022. The RBFNN model is constructed with K-Means clustering for optimal hidden layer configurations and evaluated using Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). The results demonstrate promising accuracy, with MAPE error rates below 20% and relatively low RMSE values for large red chili (10.37%, 4484) and curly red chili (14.77%, 5590). Our findings indicate the potential for creating a reliable forecast model for predicting chili prices over 7 days, enabling better supply and demand management. The study's results also suggest that increased training data enhances forecasting accuracy. This research contributes to the development of effective price forecasting models, providing valuable insights for policymakers and stakeholders in the chili industry.

https://doi.org/10.14421/ijid.2023.5129
pdf

References

M. F. Rohmah, K. G. D. Putra, R. S. Hartati, and L. Ardiantoro, “Minimum wage correlation with consumer price index predictions using support vector regression,” International Journal of Scientific and Technology Research, vol. 9, no. 3, pp. 4596–4602, 2020.

N. G. Society, “Food.” [Online]. Available: https://education.nationalgeographic.org/resource/food/

C. Chauhan, A. Dhir, M. U. Akram, and J. Salo, “Food loss and waste in food supply chains. A systematic literature review and framework development approach,” J Clean Prod, vol. 295, p. 126438, 2021, doi: 10.1016/j.jclepro.2021.126438.

W. Hidayat, M. Ardiansyah, and K. Kusrini, “Decision support system for selection of staples food and food commodity price prediction post-COVID-19 using simple additive weighting and multiple linear regression methods,” 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020, pp. 45–50, 2020, doi: 10.1109/ICOIACT50329.2020.9332095.

M. C. Zamzami and Nucke Widowati Kusumo Projo, “Nowcasting of Chili Pepper (Capsicum frutescens L.) Prices in East Java Province Using Multi-Layer Perceptron Method,” Proceedings of The International Conference on Data Science and Official Statistics, vol. 2023, no. 1 SE-Data Science, pp. 2–12, Dec. 2023, doi: 10.34123/icdsos.v2023i1.274.

International Center for Applied Finance and Economics (InterCAFE) IPB University, “Market Study on Food Sector in Indonesia,” 2018.

M. Rachmaniah, A. I. Suroso, M. Syukur, and I. Hermadi, “Strategic Food Risks – Chili’S Agrosystem Perspective,” Jurnal Manajemen dan Agribisnis, vol. 18, no. 1, p. 19, 2021, doi: 10.17358/jma.18.1.19.

U. S. Nurainun, S. Dur, R. Widyasari, U. Islam, N. Sumatera, and A. Info, “Predict the Price of Curly Red Chili in North Sumatra Using the Holt Winters Additive Method,” Journal of Mathematics and Scientific Computing With Applications, vol. 2, no. October 2020, pp. 55–60, 2021.

I. M. Wirawan, I. A. E. Zaeni, U. A. Mujaddid, and A. S. B. M. Jaya, “Fuzzy Time Series Method Comparison of Chen and Cheng Models to Predict Chili Prices,” in 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), 2021, pp. 541–546. doi: 10.1109/ICEEIE52663.2021.9616907.

G. Hegde, V. R. Hulipalled, and J. B. Simha, “A study on agriculture commodities price prediction and forecasting,” Proceedings of the International Conference on Smart Technologies in Computing, Electrical and Electronics, ICSTCEE 2020, pp. 316–321, 2020, doi: 10.1109/ICSTCEE49637.2020.9277401.

K. Prasetyo, D. D. Putri, I. Kartika Eka Wijayanti, and L. Zulkifli, “Forecasting of Red Chilli Prices in Banyumas Regency: The ARIMA Approach,” E3S Web of Conferences, vol. 444, 2023, doi: 10.1051/e3sconf/202344402017.

D. Sepri and A. Fauzi, “Prediksi Harga Cabai Merah Menggunakan Support Vector Regression,” Computer Based Information System Journal, vol. 8, no. 2, pp. 1–5, 2020, doi: 10.33884/cbis.v8i2.1921.

R. A. Falah and M. Rachmaniah, “Price Prediction Model for Red and Curly Red Chilies using Long Short Term Memory Method,” Indonesian Journal of Statistics and Its Applications, vol. 6, no. 1, pp. 143–160, May 2022, doi: 10.29244/ijsa.v6i1p143-160.

K. C. S, “Hybrid models for intraday stock price forecasting based on artificial neural networks and metaheuristic algorithms,” Pattern Recognit Lett, vol. 147, pp. 124–133, 2021, doi: 10.1016/j.patrec.2021.03.030.

A. Dani, F. B. Putra, and Q. Q. A’yun, “Red Chili Price Forecasting in Indonesia Based on Data from the Strategic Food Price Information Center Using the Neural Network,” SSRN Electronic Journal, vol. 10, no. 3, pp. 14–20, 2023, doi: 10.2139/ssrn.4497728.

B. R. P. M. Basnayake, K. D. Kaushalya, R. H. M. Wickaramarathne, M. A. K. Kushan, and N. V. Chandrasekara, “An Approach for Prediction of Weekly Prices of Green Chili in Sri Lanka: Application of Artificial Neural Network Techniques,” Journal of Agricultural Sciences - Sri Lanka, vol. 17, no. 2, pp. 333–349, 2022, doi: 10.4038/jas.v17i2.9746.

M. A. Rasyidi, “Prediksi Harga Bahan Pokok Nasional Jangka Pendek Menggunakan ARIMA,” Journal of Information Systems Engineering and Business Intelligence, vol. 3, no. 2, p. 107, Oct. 2017, doi: 10.20473/jisebi.3.2.107-112.

T. Handhayani, I. Lewenusa, and M. Y. R. Arpipi, “Forecasting Volatile Fresh Chili Prices In Indonesia Using Support Vector Regression,” Proceeding - 2024 International Conference on Information Technology Research and Innovation, ICITRI 2024, pp. 281–286, 2024, doi: 10.1109/ICITRI62858.2024.10699118.

Z. M. Yaseen, A. El-Shafie, H. A. Afan, M. Hameed, W. H. M. W. Mohtar, and A. Hussain, “RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia,” Neural Comput Appl, vol. 27, no. 6, pp. 1533–1542, 2016, doi: 10.1007/s00521-015-1952-6.

Z. Yun, Z. Quan, S. Caixin, L. Shaolan, L. Yuming, and S. Yang, “RBF Neural Network and ANFIS-Based Short-Term Load Forecasting Approach in Real-Time Price Environment,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 853–858, 2008, doi: 10.1109/TPWRS.2008.922249.

I. Ambarwati, “Metode Radial Basis Function Neural Network (RBFNN) untuk Peramalan Kunjungan Wisatawan dengan Perbandingan Kombinasi Fungsi Pelatihan,” in PRISMA, 2023, pp. 687–693.

M. Yanis, A. Y. Budiman, A. S. Mohruni, S. Sharif, M. A. Suhaimi, and H. Dwipayana, “Levenberg-Marquardt, Bayesian-regularization, and scaled conjugate gradient algorithms for predicting surface roughness accuracy on side milling AISI 1045,” AIP Conf Proc, vol. 2544, no. 1, p. 20013, Apr. 2023, doi: 10.1063/5.0117323.

U. A. Dodo et al., “Comparative study of different training algorithms in backpropagation neural networks for generalized biomass higher heating value prediction,” Green Energy and Resources, vol. 2, no. 1, p. 100060, 2024, doi: https://doi.org/10.1016/j.gerr.2024.100060.

X. Yin, Q. Zhang, H. Wang, and Z. Ding, “RBFNN-Based Minimum Entropy Filtering for a Class of Stochastic Nonlinear Systems,” IEEE Trans Automat Contr, vol. 65, no. 1, pp. 376–381, 2020, doi: 10.1109/TAC.2019.2914257.

Q. Jiang, L. Zhu, C. Shu, and V. Sekar, “An efficient multilayer RBF neural network and its application to regression problems,” Neural Comput Appl, vol. 34, no. 6, pp. 4133–4150, 2022, doi: 10.1007/s00521-021-06373-0.

Y. Zhang, Z. Luo, Q. Li, D. Cheng, and W. Tan, “Using the Radial Basis Function with the Novel Optimization Algorithms to Appraise the Pile Settlement Rates,” vol. 28, no. 3, pp. 489–499, 2024.

C. Yang, J. Luo, and N. Wang, “Chapter Three - Uncertainties compensation-based teleoperation control,” C. Yang, J. Luo, and N. B. T.-H.-I. L. and C. for R. T. Wang, Eds., Academic Press, 2023, pp. 39–71. doi: https://doi.org/10.1016/B978-0-32-395143-2.00007-3.

H. Hong et al., “Radial basis function artificial neural network (RBF ANN) as well as the hybrid method of RBF ANN and grey relational analysis able to well predict trihalomethanes levels in tap water,” J Hydrol (Amst), vol. 591, no. April, p. 125574, 2020, doi: 10.1016/j.jhydrol.2020.125574.

S. Panda and G. Panda, “On the Development and Performance Evaluation of Improved Radial Basis Function Neural Networks,” IEEE Trans Syst Man Cybern Syst, vol. 52, no. 6, pp. 3873–3884, 2022, doi: 10.1109/TSMC.2021.3076747.

A. Zhao, A. Toudeshki, R. Ehsani, J. H. Viers, and J. Q. Sun, “Robustness improvement of optimal control in terms of RBFNN with empirical model reduction and transfer learning,” Int J Control, 2024, doi: 10.1080/00207179.2024.2328687.

H. Haviluddin and A. Jawahir, “Comparing of ARIMA and RBFNN for short-term forecasting,” International Journal of Advances in Intelligent Informatics; Vol 1, No 1 (2015): March 2015, 2015, doi: 10.26555/ijain.v1i1.10.

U. Salam, S. Lee, V. Fullerton, Y. Yusuf, S. Krantz, and M. Henstridge, “Indonesia case study: Rapid technological change–challenges and opportunities,” Pathways for Prosperity Commission Background Paper Series, 2018.

F. Novitasari, N. C. Drestalita, and S. Maryati, “The impacts of infrastructure development on economic growth (case study: DKI Jakarta, Banten Province and West Java Province),” in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2020, p. 12017.

PD. P. Jaya, “Informasi Pangan Jakarta.” [Online]. Available: https://infopangan.jakarta.go.id/commodity

A. Yuditya, A. Hardjanto, and U. Sehabudin, “Fluktuasi Harga dan Integrasi Pasar Cabai Merah Besar (Studi Kasus: Pasar Induk kramat Jati dan Pasar Eceran di DKI Jakarta),” Indonesian Journal of Agriculture Resource and Environmental Economics, vol. 2, no. 1, pp. 1–13, 2023, doi: 10.29244/ijaree.v2i1.50669.

D. M. C. Dos Santos, B. K. Dos Santos, and C. G. Dos Santos, “Implementation of a standard work routine using Lean Manufacturing tools: A case Study,” Gestao e Producao, vol. 28, no. 1, 2021, doi: 10.1590/0104-530X4823-20.

D. Egger et al., “Falling living standards during the COVID-19 crisis: Quantitative evidence from nine developing countries,” Sci Adv, vol. 7, no. 6, p. eabe0997, Jan. 2025, doi: 10.1126/sciadv.abe0997.

O. Haroon and S. A. R. Rizvi, “Flatten the Curve and Stock Market Liquidity – An Inquiry into Emerging Economies,” Emerging Markets Finance and Trade, vol. 56, no. 10, pp. 2151–2161, Aug. 2020, doi: 10.1080/1540496X.2020.1784716.

D. McMillan, A. Speight, and O. Apgwilym, “Forecasting UK stock market volatility,” Applied Financial Economics, vol. 10, no. 4, pp. 435–448, 2000, doi: 10.1080/09603100050031561.

A. Ambarwari, Q. J. Adrian, and Y. Herdiyeni, “Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning untuk Identifikasi Tanaman,” RESTI, vol. 4, no. 1, pp. 117–122, 2020, doi: https://doi.org/10.29207/resti.v4i1.1517.

S. Uyun, S. Rahardyan, and M. Anshari, “Skew Correction and Image Cleaning Handwriting Recognition Using a Convolutional Neural Network,” International Journal on Informatics Visualization, vol. 7, no. 3, pp. 681–687, 2023, doi: 10.30630/joiv.7.3.1712.

T. Blu, P. Thevenaz, and M. Unser, “Linear interpolation revitalized,” IEEE Transactions on Image Processing, vol. 13, no. 5, pp. 710–719, 2004, doi: 10.1109/TIP.2004.826093.

M. R. Islam, M. N. Akhtar, and M. Begum, “Long short-term memory (LSTM) networks based software fault prediction using data transformation methods,” in 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), 2022, pp. 1–6. doi: 10.1109/ICAEEE54957.2022.9836388.

R. D. Martin, V. J. Yohai, and R. H. Zamar, “Min-Max Bias Robust Regression,” The Annals of Statistics, vol. 17, no. 4, pp. 1608–1630, Dec. 1989, doi: 10.1214/aos/1176347384.

L. A. Badulescu, “Experiments for a better Gini index splitting criterion for data mining decision trees algorithms,” 2020 24th International Conference on System Theory, Control and Computing, ICSTCC 2020 - Proceedings, pp. 208–212, 2020, doi: 10.1109/ICSTCC50638.2020.9259691.

N. Karimi, S. Kazem, D. Ahmadian, H. Adibi, and L. V Ballestra, “On a generalized Gaussian radial basis function: Analysis and applications,” Eng Anal Bound Elem, vol. 112, pp. 46–57, 2020, doi: https://doi.org/10.1016/j.enganabound.2019.11.011.

F. Fernández-Navarro, C. Hervás-Martínez, and P. A. Gutierrez, “Generalised Gaussian radial basis function neural networks,” Soft comput, vol. 17, no. 3, pp. 519–533, 2013, doi: 10.1007/s00500-012-0923-4.

M. D. R. Wahyudi, “Evaluation of TF-IDF Algorithm Weighting Scheme in The Qur’an Translation Clustering with K-Means Algorithm,” The Journal of Information Technology and Computer Science (JITeCS), vol. 6, no. 2, pp. 117–129, 2021, doi: https://doi.org/10.25126/jitecs.202162295.

Qomariyah and M. U. Siregar, “Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 7, no. 2, pp. 91–99, May 2022, doi: 10.14421/jiska.2022.7.2.91-99.

P. Dangeti, Statistical for Machine Learning. Packt Publishing, 2017.

R. Suwanda, Z. Syahputra, and E. M. Zamzami, “Analysis of Euclidean Distance and Manhattan Distance in the K-Means Algorithm for Variations Number of Centroid K,” J Phys Conf Ser, vol. 1566, no. 1, p. 12058, 2020, doi: 10.1088/1742-6596/1566/1/012058.

J. Ferreirós, “Gauss and the Mathematical Background to Standardisation,” HoST - Journal of History of Science and Technology, vol. 14, no. 1, pp. 32–51, 2020, doi: 10.2478/host-2020-0003.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput Sci, vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.

H. Yao, Y. Wang, L. Zhang, J. Zou, and C. Finn, “C-Mixup: Improving Generalization in Regression,” in 36th Conference on Neural Information Processing Systems (NeurIPS 2022), 2022.

D. A. Swanson, “On the Relationship among Values of the Same Summary Measure of Error when it is used across Multiple Characteristics at the Same Point in Time: An Examination of MALPE and MAPE,” Review of Economics and Finance, vol. 5, no. 1, pp. 1–14, 2015, [Online]. Available: https://escholarship.org/uc/item/1f71t3x9

E. Vivas, H. Allende-Cid, and R. Salas, “A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score,” 2020. doi: 10.3390/e22121412.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.